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Good afternoon everyone! This project began early last summer during an internship at Walt Disney Animation,
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The Goal
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Hyperion
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Where we initially met with a team of VFX artists see what features they wanted from the next generation of Disney’s Hyperion rendering engine. One of the features 
which they requested
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was for Hyperion to eventually support rendering general procedural media.



Strange World 4

This would allow for supporting near infinite amounts of detail within the volumes used in their theatrical productions. However, due to algorithmic constraints this is 
not currently supported
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To render their productions, Hyperion currently relies on techniques based on the null-scattering paradigm,
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Homogenization

Which requires that we first homogenize all volumes.
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Take for example this heterogeneous volume,
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Which has a spatially varying density function. For visualization purposes, I am going to replace the rendering of the volume,
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With a visualization of the average density looking straight through the medium. Null-scattering techniques require us
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to inject ficticious, or null density into the medium, such that if we took
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the null density,
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and real density



13

And then combined them by adding them together,
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We would end up
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With a constant density medium whose
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 total combined density is often referred to
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As the majorant. Now, most modern algorithms allow us to specify the majorant (click) as any non-zero positive value, and no matter what majorant we specify,
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Modern null-scattering algorithms should still give us the correct expected result. However, the choice of the majorant directly impacts the performance of our 
renders.
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If the majorant is set too high (*click*),
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 then the cost of our renders will increase, and may even become too costly to in production.
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Alternatively, if the majorant is set too low (*click*) such that the majorant no longer bounds the density, the renders might become fast,
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But the variance of the renders will become so uncontrollable, that the renders will never converge in any reasonable amount of time. To have both low cost
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and guarantee low variance, we ideally want a majorant which (*click*) bounds the density as tightly as possible. However, getting these tight majorants
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Volume representation

Depends on how we represent our volumes.
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if we only render volumes like the Disney cloud,
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Which are explicitly stored as voxel density grids, then finding a tightly bounding majorant 
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Is as easy (click) as iterating through all of the voxels,
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And setting the majorant to the largest found density. However,
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when dealing with purely procedural volumes,
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Or complicated production workflows,
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The underlying density (*click*) becomes a black box whose general shape is not known to the renderer.
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Any majorant which we specify, becomes an approximation for a bounding majorant,
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Becoming very difficult to guarantee that we will ever have a tightly bounding one. And, without a tightly bounding majorant we can’t be sure that we will avoid,



D
en

sit
y

X

Real Density
Majorant

34

uncontrollable variance,
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Or too inefficient of renders
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It is for this reason that Disney currently
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bakes all volumes into voxel density grids before rendering them. Representing all volumes as grids allows null-scattering techniques to be (*click*) robust, since, 
having a density grid (*click*) guarantees that tight majorants can always be found. However,
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The process of baking reduces (*click*) the visual fidelity of all volumes, necessitates (*click*) preprocessing all volumes, and significantly increases (*click*) the 
storage requirements for all production scenes. We instead propose a solution which,
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😢 storage / memory

Makes most null-scattering techniques resilient to non-bounding majorants. Our technique is (*click*) robust, discovers (*click*) tight majorants during render time,
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😢 storage / memory

maintains the same visual quality as using bounding majorants in the converged renders,
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😄 visual quality

require little to no preprocessing time
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😄 visual quality
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😄 visual quality

And requires no extra storage on top of what is already needed in any practical implementation of null-scattering. However, in return for fixing all these prior issues,
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😄 visual quality

Our technique requires that we relax the (*click*) unbiased property of most existing methods,
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To instead settle for only being consistent.



👍 robust👍 tight 🐜

😄 preprocessing time

😄 works for any majorant

😐 consistent
44

😄 visual quality

😄 storage / memory
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Consistency

Now, let us define what we mean by consistency.
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Let’s represent the first pixel sample in a render as I of 1, and let’s also assume that
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This first pixel sample is very biased.
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A full render effectively takes the average across many different pixel samples. A consistent algorithm
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Is one which will guarantees that our render will eventually converge to the real solution,
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in the limit. Regardless of how many individual pixel samples are biased.



Prior inspiration
Full support for procedural media

Biased but consistent algorithms have appeared throughout graphics from photon mapping to many-light methods. And one idea, which has been used previously 
by virtual point lights,



Prior inspiration
Full support for procedural media
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Clamping to reduce variance

Is the idea of clamping to reduce variance. This is the first step in our technique.
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Significantly non-bounding majorants lead to uncontrollable variance, HOWEVER, we can enforce our majorants to be always bounding,
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by clamping the medium density to the specified majorant. This process will obviously 
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Make the medium itself biased. However, one thing to make note of is that if we 
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Increased the majorant, and thus clamped less of the density,
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Our render would be less biased. And you can now start to see a thought experiment forming.
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What if we had a sequence of pixel samples,
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Majorant increases from left to right

which all used monotonically increasing majorants. Meaning, the first few pixel samples will be biased,
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Majorant increases from left to right

But after some finite point a bounding majorant will be found and every subsequent pixel sample will be unbiased.
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Majorant increases from left to right
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The entire render would be the average of all these images.
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Which we can decompose into a finite number of (*click*) biased terms, while the remainder are all (*click*) unbiased.



j

∑
k=1

Ik
n
+

n

∑
k=j+1

Ik
n

62

Biased



j

∑
k=1

Ik
n
+

n

∑
k=j+1

Ik
n

62
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Biased Unbiased

In the infinite limit, the biased contribution is going to converge to
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Biased Unbiased

0

Zero, while the contribution from the infinite remaining unbiased terms is going to converge to
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The true solution. So, if we discover a bounding majorant in finite time, we can make most null-scattering algorithms consistent while avoiding uncontrollable 
variance.
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Progressively update majorants

Which brings us to the second step in our technique. Progressively updating the majorants.
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Over the course of rendering, we will naturally evaluate the density
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At many different points within the medium.
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Every single one of these density evaluations may or may not
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get clamped. However, All of these evaluations give us direct,
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Estimates for how non-bounding our majorant actually is. We can then choose
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max{Density Evals}

the largest difference between any of the density evaluations and our current majorant,
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Next Majorant = max{Density Evals}

To directly set the majorant to use for the next render pass. We also add a small non-zero
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Next Majorant = max{Density Evals}
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Next Majorant = max{Density Evals} + C

constant to the updated majorant to guarantee that we will discover a bounding majorant in finite time. For brevity, we refer you to the paper for our explanation 
regarding this. The combination of clamping then progressively updating majorants fully summarizes our progressive null-tracking technique.
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Next Majorant = max{Density Evals} + C
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Implementation

Before we move onto results. We need to mention that while it is our intention to eventually incorporate this technique
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The Goal
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Hyperion
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Into Hyperion, most of our implementations and results are from PBRT.



Real Density

D
en

sit
y

Null Density

X

77

Additionally, while we introduced the idea of a majorant as if it were a singular global constant. In practice, we store it
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As a piecewise constant function to better locally fit the medium. Thus, we progressively update each majorant individually.
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Results

Now, on to some results.
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For all results rendered using our technique, 
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We initialize our majorants to be near-zero to convey the robustness of our technique in the worst case scenario. Our progressive method then updates
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Those majorants over the course of a render.
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For this bunny scene, we compare
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ratio plus weighted delta tracking which are given tightly bounding majorants ahead of time
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To our technique, which also uses ratio and weighted delta tracking, except with our progressive clamping and updating.  For this scene, our discovered majorants 
converge to become bounding very quickly so the bias seems visually imperceptible.
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In terms of error, our technique converges fairly similarly to ratio tracking.



For the Disney cloud scene, which is a lot more dense, we performed



Reference
Unb. Ray 

[Kettunen et. al. 2021]

Ratio 
[Novak et. al. 2014]

Ours 
(Progressive Ratio)

MSE: 1.4e-2 MSE: 5.4e-3 MSE: 5.9e-3

Equal extinction call comparisons between our method and a few state of the art transmittance estimators. In scenes like this where most of the variance comes from 
sources outside of transmittance estimation, low cost but higher variance estimators like ratio tracking are still preferable which is why we apply our progressive 
technique to ratio tracking. The point of this comparison is to show that even in these difficult scenes our progressive technique makes current methods resilient to 
non-bounding extinctions without taking a significant performance hit.



Progressive null-tracking for volumetric rendering

Conclusion

In conclusion, we have introduced a progressive method for making most null-scattering techniques resilient to non-bounding majorants. Our method imposes no 
significant performance loss, requires no major modification to any existing null-scattering algorithm, and can be implemented as a simple abstraction layer on top of 
a renderers medium interface.
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Thank You

Thank you!


