A Texture Streaming Pipeline for Real-Time GPU Ray Tracing

Mark Lee
Walt Disney Animation Studios
Burbank, USA
mark.st.lee@gmail.com

Nathan Zeichner
Walt Disney Animation Studios
New York, USA
nathan.zeichner@disneyanimation.com

Yining Karl Li
Walt Disney Animation Studios
Burbank, USA
karlli@disneyanimation.com

B) Dynamic MIP
levels using our
texture streaming

C) Lowest
resolution MIP
level per face

D) No Textures

Figure 1: A scene from Moana 2, rendered using our real-time GPU ray tracer (B, C, D) and compared with the final frame (A) from Disney’s

Hyperion Renderer. Rendering without textures (D) is not a useful previsualization for (A). Without streaming, only the lowest resolution MIP
tile per Ptex face can fit on the GPU (C). With our texture streaming, we handle 1.5 TB of Ptex files on disk using only 2 GB of GPU VRAM to
achieve a result (B) that matches the texture detail of (A) while maintaining >95% of the average performance of (D), without stalls.

Abstract

Disney Animation makes heavy use of Ptex [Burley and Lacewell
2008] across our assets [Burley et al. 2018], which required a new
texture streaming pipeline for our new real-time ray tracer. The goal
from the start was to create a scalable system which could provide
a real-time, zero-stall experience to users at all times, even as the
number of Ptex files expand into the tens of thousands. We cap the
maximum size of the GPU cache to a relatively small footprint, and
employ a fast LRU eviction scheme when we hit the limit.

ACM Reference Format:

Mark Lee, Nathan Zeichner, and Yining Karl Li. 2025. A Texture Streaming
Pipeline for Real-Time GPU Ray Tracing. In SIGGRAPH °25: Aug 10 — Aug 14,
2025. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3721239.
3734098

1 Related Work

While virtual texturing is a well established technique in both offline
rendering [Peachey 1990] and in games [van Wavern 2009], our
new system had the novel core requirement of supporting Ptex on
the GPU. Our approach to GPU texture sampling is inspired by Lee
et al. [2017]. A more rigorous analysis of this "filter after shading"
approach can be found in Pharr et al. [2024]. The OptiX Toolkit
provides a general streaming mechanism [Nvidia 2024] which can
be used to page texture or geometry assets on demand to the GPU;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH °25, Vancouver, BC, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-XXXX-X/2025/06

https://doi.org/10.1145/3721239.3734098

however, Ptex brings its own set of requirements, such as need for
supporting widely varying face dimensions within a single Ptex file,
meaning the system needs to efficiently handle allocations from 8
bytes up to 64k and everything in between.

2 System Overview

The LRUCache: The LRUCache is used to map a large address
space to a much smaller physical pool of memory. We use a slab
allocator [Bonwick 1994] as the underlying memory allocation
mechanism. This scheme is well suited to the allocation patterns
required by Ptex tiles/MIPs. Each slab always has a fixed size of
512kb, but the number of slots each slab gets divided into is not
decided until runtime and is scene dependent. The eviction scheme
is discussed later in the "Eviction Mechanism" section.

Tiles and TileKeys: Ptex is a hierarchical format, where the top
level has one or more faces. Within each face there is a full MIP-
chain, which contains progressively lower resolution versions of
the highest resolution face. Furthermore, higher resolution MIP-
levels in the chain may be tiled if the resolution exceeds a threshold.
These texture tiles are the granularity we chose to cache at.
When a shader wants to sample a Ptex face, it does so by gen-
erating a 64-bit TileKey (see Table 1) and queries a hash table to
retrieve a concrete GPU memory address where the texels live. Of
course it is possible these texels were not uploaded to the GPU yet,
so if the TileKey query does not find an entry then the requested
TileKey is added to a tile request buffer. A fallback 1x1 tile is used
instead, which is always resident for each tile of each face.

Uploading Tiles onto the GPU: An updated tile request buffer
is asynchronously transferred back to the CPU after each render
kernel execution. When the conditions are right to process the

https://orcid.org/0009-0008-1971-902X
https://orcid.org/0009-0009-8874-4357
https://orcid.org/0000-0003-1872-8748
https://doi.org/10.1145/3721239.3734098
https://doi.org/10.1145/3721239.3734098
https://doi.org/10.1145/3721239.3734098

SIGGRAPH 25, Aug 10 — Aug 14, 2025, Vancouver, BC, Canada

Table 1: Ptex TileKey Definition

Bits | Index | Usage

50-63 | tile Used when a face has been split into tiles
46-49 | MIP Lower indices represent higher res MIPs
24-45 | face Up to 4,194,304 faces supported

23 flag Set to 1 to indicate valid key

0-22 | map A maximum of 8,388,607 maps supported

latest tile request buffer (see Section 4), we deduce the memory size
needed for each tile and batch allocate all of them at once from
the LRUCache. This call may trigger a cascade of LRU evictions
to satisfy the request but the request will always be satisfied. At
that point we hand off the tile request list with the newly allocated
GPU destination memory addresses for each tile to a set of CPU
worker threads, whose job it is to place the TileKey texels at the
associated GPU memory address. This happens asynchronously in
the background and subsequent render kernel launches will simply
use the most recent version of the TileKey to GPU address hash
map in the meantime. These worker threads are allowed to finish
at their own pace and the latest hashmap is only made visible to
the GPU once they complete. This is a recurring pattern; trade off
potential stalls against potentially increased latency. The amount
of latency can be controlled by setting the size of the tile request
queue which feeds the worker threads.

Eviction Mechanism: To ensure the LRUCache is evicting the least
recently used tiles, it needs to be given information about when
each tile was last touched. To accomplish this the hashmap index
of each tile that was touched is recorded during the current render
kernel invocation. This is stored compactly in a single bit-field
whose size is equal to the number of entries in the hashmap. This
bit-field contains sufficient information such that we can correlate
each on-bit with the corresponding allocation in the LRUCache. The
result is perfect LRU eviction with a per frame time granularity. It
is worth noting that the work of filling in the tiles touched bit-field
is only done when the cache detects it is close to filling up.

The act of evicting a tile in practice means that an existing resi-
dent tile will give up its memory to another tile. From the GPU’s
point of view, the eviction itself is not visible immediately, and will
not be until one of the tile fetch worker threads transfers the texels
from a requested tile into that memory address.

Probabilistic Tile Rejection: Consider what happens during the
initial frames at renderer start up. Here the GPU texture cache is
empty so there will be zero tile cache hits, which will cause the
tile request buffer to quickly fill up. We write to the framebuffer in
blocks of 8x4 pixels, starting at screen top left. Since every texture
fetch will result in a new tile fetch request, the buffer will end up
with many duplicate requests accounting for only the top portion
of the framebuffer. Instead, ideally tile requests would be spread
out evenly evenly over the framebuffer such that the total number
would exactly fill the tile request buffer on average. To achieve this,
shaders reject incoming requests with a probability RP, defined as:

M. Lee et al.

unique tile requests from last frame
RP=1-

total tile requests from last frame W

As the tile cache fills up and the number of tile requests lessens,
the rejection probability eventually drops to zero as the number of
unique tile requests gets closer to the actual number of tile requests.

3 Texture Sampling

A custom texture sampler was developed for the GPU to support
Ptex lookups. Primary rays are generated using filter importance
sampling [Ernst et al. 2006], which we take advantage of to filter
textures as well as anti-alias hard edges. Each time a shader samples
a texture, internally we point sample a single texel from the MIP-
level at each side of the idealized MIP-level, as determined by the
ray differentials. This results in two texel fetches, which are then
blended together. If a particular texel is not immediately available,
we substitute the 1x1 fallback in its place. This is very similar to the
scheme outlined in Section 6.2 of Lee et al. [2017]. For the typical
case, this scheme means we can avoid having to upload Ptex face
adjacency tables onto GPU. The downside of this becomes apparent
when texture magnification is required however.

4 Stall Prevention

As mentioned, we want zero stalls during rendering as the number
of textures increases. Section 2.3 discusses how the worker threads
responsible for uploading tiles to the GPU never cause stalls.

Data transfers from the CPU to the GPU are generally not prob-
lematic since they can be queued on the same CUDA stream with
their dependent render kernels. These will not cause stalls as long
as the CPU memory is pinned. Note that we don’t need to allocate
the host memory used for the texture tile transfers as pinned. These
transfers are performed synchronously on non-rendering CUDA
streams by worker threads. These threads do not mark themselves
as done until all of these synchronous transfers complete.

Potential stalls from data transfers from the GPU to the CPU are
handled by double buffering all the data, in conjunction with pinned
CPU memory. Since the texture tile transfers do not require pinned
memory, the main consumer of pinned memory ends up being the
double buffered hashtables, which can grow to accommodate the
number of active texture tiles in the world.

5 Conclusions and Future Work

The result of integrating this cache into our real-time ray tracer was
a big increase in render fidelity with little disruption to workflows.
Our artists preferred greater texture latency over a reduced frame
rate. In our progressive ray tracer the early samples that retrieve
the fallback or lower resolution tiles lose influence over time as
higher detailed textures are loaded in. The result is an artist will
get a faster time to the first pixel and can make a faster judgement,
without changing convergence time. We are currently working on
porting this technique over to our real time rasterizer. This port
provides additional challenges because of the need to randomly
access the entire GPU cache from within OpenGL and Vulkan. We
look forward to presenting this work in the future.

A Texture Streaming Pipeline for Real-Time GPU Ray Tracing

References

Jeff Bonwick. 1994. The Slab Allocator: An Object-Caching Kernel. In USENIX Summer
1994 Technical Conference (USENIX Summer 1994 Technical Conference). USENIX
Association, Boston, MA. https://www.usenix.org/conference/usenix-summer-
1994-technical-conference/slab-allocator-object-caching-kernel

Brent Burley, David Adler, Matt Jen-Yuan Chiang, Hank Driskill, Ralf Habel, Patrick
Kelly, Peter Kutz, Yining Karl Li, and Dan Teece. 2018. The Design and Evolution
of Disney’s Hyperion Renderer. ACM Transactions on Graphics 37, 3, Article 33
(Aug. 2018). https://doi.org/10.1145/3182159

Brent Burley and Dylan Lacewell. 2008. Ptex: Per-Face Texture Mapping for Production

Rendering. Computer Graphics Forum 27, 4 (2008), 1155-1164. https://doi.org/10.

1111/j.1467-8659.2008.01253.x
Manfred Ernst, Marc Stamminger, and Giinther Greiner. 2006. Filter Importance

Sampling. In Proc. of IEEE Symposium on Interactive Ray Tracing. 125-132. https:

SIGGRAPH 25, Aug 10 — Aug 14, 2025, Vancouver, BC, Canada

//doi.org/10.1109/RT.2006.280223

Mark Lee, Brian Green, Feng Xie, and Eric Tabellion. 2017. Vectorized production
path tracing. In Proceedings of High Performance Graphics (Los Angeles, California)
(HPG ’17). Association for Computing Machinery, New York, NY, USA, Article 10,
11 pages. https://doi.org/10.1145/3105762.3105768

Nvidia. 2024. Optix Demand Loading Library. https://github.com/NVIDIA/optix-
toolkit/tree/master/DemandLoading.

Darwyn Peachey. 1990. Texture on Demand. Pixar Technical Memos, Article 217 (1990).

Matt Pharr, Bartlomiej Wronski, Marco Salvi, and Marcos Fajardo. 2024. Filtering After
Shading With Stochastic Texture Filtering. Proc. ACM Comput. Graph. Interact.
Tech. 7, 1, Article 14 (May 2024), 20 pages. https://doi.org/10.1145/3651293

Jan Paul van Wavern. 2009. id Tech 5 Challenges: From Texture Virtualization to
Massive Parallelization. SIGGRAPH 2009: Beyond Programmably Shading Course
Notes, Article 7 (Aug. 2009). https://doi.org/10.1145/1667239.1667246

https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://doi.org/10.1145/3182159
https://doi.org/10.1111/j.1467-8659.2008.01253.x
https://doi.org/10.1111/j.1467-8659.2008.01253.x
https://doi.org/10.1109/RT.2006.280223
https://doi.org/10.1109/RT.2006.280223
https://doi.org/10.1145/3105762.3105768
https://github.com/NVIDIA/optix-toolkit/tree/master/DemandLoading
https://github.com/NVIDIA/optix-toolkit/tree/master/DemandLoading
https://doi.org/10.1145/3651293
https://doi.org/10.1145/1667239.1667246

	Abstract
	1 Related Work
	2 System Overview
	3 Texture Sampling
	4 Stall Prevention
	5 Conclusions and Future Work
	References

