
The Design and Evolution of Disney’s Hyperion Renderer

BRENT BURLEY, DAVID ADLER, MATT JEN-YUAN CHIANG, HANK DRISKILL, RALF HABEL,
PATRICK KELLY, PETER KUTZ, YINING KARL LI, and DANIEL TEECE, Walt Disney Animation Studios

Fig. 1. Production frames from Big Hero 6 (upper left), Zootopia (upper right), Moana (bottom left), and Olaf’s Frozen Adventure (bottom right), all rendered

using Disney’s Hyperion Renderer.

Walt Disney Animation Studios has transitioned to path-traced global illu-
mination as part of a progression of brute-force physically based rendering
in the name of artist efficiency. To achieve this without compromising our
geometric or shading complexity, we built our Hyperion renderer based
on a novel architecture that extracts traversal and shading coherence from
large, sorted ray batches. In this article, we describe our architecture and
discuss our design decisions. We also explain how we are able to provide
artistic control in a physically based renderer, and we demonstrate through
case studies how we have benefited from having a proprietary renderer that
can evolve with production needs.

CCS Concepts: • Computing methodologies → Rendering; Ray tracing;

Additional Key Words and Phrases: Production rendering, physically based
rendering, path tracing

ACM Reference format:

Brent Burley, David Adler, Matt Jen-Yuan Chiang, Hank Driskill, Ralf
Habel, Patrick Kelly, Peter Kutz, Yining Karl Li, and Daniel Teece. 2018. The
Design and Evolution of Disney’s Hyperion Renderer. ACM Trans. Graph.

37, 3, Article 33 (July 2018), 22 pages.
https://doi.org/10.1145/3182159

1 INTRODUCTION

Since the early 1990s, rendering of computer graphics (CG) im-
agery at Walt Disney Animation Studios had been accomplished
using the Reyes algorithm (Cook et al. 1987) in Pixar’s RenderMan.
More recently, ray-traced global illumination (GI) promised artists
significant productivity gains by providing more immediate
feedback during rendering and removing the significant data man-
agement burden associated with shadow maps and point clouds.
However, initial attempts to render our existing production scenes
with ray-traced GI were unsuccessful; incoherent access of texture
maps inhibited shading of indirect ray hits, and we had difficulty
fitting our scenes in memory as required by existing ray-traced
renderers.

To overcome these limitations, we created a new rendering ar-
chitecture which traces and shades rays in large batches, first
sorting each batch for geometric coherence during scene traver-
sal, then sorting ray hits for texture coherence during shading
(Eisenacher et al. 2013). This streaming architecture is at the
heart of Hyperion, our proprietary renderer, and allows us to ren-
der scenes using ray-traced GI without compromising geometric

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The de�nitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3182159.

https://doi.org/10.1145/3182159
https://doi.org/10.1145/3182159

33:2 • B. Burley et al.

or shading detail. Starting with the production of Big Hero 6,
Hyperion has been used to render all CG images in our studio
(Figure 1).

In this article, we begin by recounting our motivation and phi-
losophy for developing a new renderer in Section 2. We detail
fundamental aspects of the system in Section 3. We present case
studies of significant features that have evolved Hyperion’s design
based on specific production needs in Section 4. We then discuss
how we make path tracing practical in production—how we reduce
noise, debug problems, and provide artistic control within the con-
fines of our physically based renderer—in Section 5. We finish by
discussing tradeoffs and limitations of our design decisions with
some suggestions for future directions in Section 6.

2 BACKGROUND

2.1 Why a New Renderer?

Historically, rendering at Walt Disney Animation Studios has
evolved around an efficient look-development process based on
a philosophy of “painted proceduralism.” Texture maps form the
foundation of our shading, offering advantages in both authoring
and consumption, with typically dozens of unique texture layers
applied to each surface. Textures are frequently adjusted and lay-
ered during shading using expressions (Selle et al. 2011), providing
artistic flexibility and control within a consistent, predictable inter-
face. While expressions can also be used for in-render pattern gen-
eration, they are more typically baked into texture maps to gain the
benefits of high-quality filtering, intrinsic level-of-detail through
mipmaps, and predictable cost.

This texture-heavy workflow has been advantageously em-
ployed on all of our productions for well over a decade. More
recently, alongside the move to physically based rendering,
adoption of techniques such as Point-Based Global Illumination
(Christensen 2010) facilitated a richer look in rendered imagery,
but at a cost. Artists were burdened with long iteration times,
having to bake lighting into vast point cloud files before rendering.
As an alternative, the immediacy of ray-traced global illumination
promised increased artist efficiency, but came with other concerns.
Incoherent texture access when shading secondary rays proved
prohibitive with our texture maps. The requirement that the
scene be fully resident in memory to enable ray tracing would
also have forced us to scale back our scene complexity; something
we could not impose in the name of reducing iteration time. For
instance, attempting to render even a fraction of one city block
in Big Hero 6 in an existing ray-traced renderer exceeded the
64GB physical memory limit of our systems at the time, and we
estimated our need to be perhaps an order of magnitude greater.
In contrast, these are areas that the Reyes architecture handles
well—by dicing and shading the scene one surface at a time,
Reyes supports coherent texture access on geometry larger than
available memory. These observations gave rise to the question: is
it possible to combine the core strengths of Reyes with the promise
of ray-traced global illumination? Specifically, could we perform
GI rendering in a streaming manner, for example, making one pass
over the scene for camera rays and one additional pass per indirect
bounce?

2.2 Developing Hyperion

To explore the idea of “streaming GI,” we implemented a num-
ber of experimental renderers. Initially we tried various biased ap-
proaches such as tracing “integrating cones” with the hope that we
would need many fewer cones than rays. We also considered shar-
ing radiance estimates between cones at intermediate hit points,
but this approach made reasoning about the quality and correct-
ness of the image difficult. Ultimately, we found Monte Carlo path
tracing to be the simplest and most robust approach, but this meant
we would have far more rays than expected, more than we could
fit in memory. Because of this, we shifted our focus to maximizing
traversal and shading coherence to minimize the number of times
we visit each scene object.

In our final prototype (Eisenacher et al. 2013), sorted deferred
path tracing using batches of up to 33 million rays provided
enough shading coherence to allow efficient texturing even when
all of the textures were reread from the network for each batch. We
also demonstrated only a 2× performance penalty for out-of-core

geometry, where the scene’s geometry is too large to fit in main
memory so objects are purged and reloaded from memory dur-
ing ray intersection. The results of our prototype were compelling
enough that we decided to write a renderer targeted at our then-
current production, Big Hero 6. This gave us roughly 18 months to
develop Hyperion, adding features such as motion blur, instancing,
hair, subsurface scattering, volumes, and various artistic controls.
Hyperion also needed features to enable artists and technical users
to debug their scenes. And because we could not afford to render
images to convergence, we needed to develop a robust denoising
solution.

Our goals were ambitious but we had great advantages devel-
oping Hyperion during and specifically for Big Hero 6: we only
needed to implement features that were critical to the production,
and we always had a large amount of representative test data avail-
able to drive development. To mitigate risk we focused initially
on features that had no workarounds, delaying features such as
motion blur and volumes which could be handled with composit-
ing techniques, though fortunately we completed these additional
features in time. We initially maintained our previous rendering
pipeline as a contingency plan, though this was abandoned during
production because of the overhead incurred by maintaining two
pipelines with feature parity, and artists had already become de-
pendent on the benefits offered by the new renderer. We ultimately
succeeded because of the deep commitment of the Big Hero 6 pro-
duction team.

2.3 Design Philosophy

Hyperion continues our migration toward physically based ren-
dering (Burley 2012, 2015). Being an animation studio, our mo-
tivation for using phyiscally based rendering is primarily artist
productivity rather than any explicit goal of increased realism. It
promises rich, plausible results with a minimum of effort and pro-
vides a better starting point for artistic iteration than ad-hoc ren-
dering. To meet art direction, which is never strictly photoreal-
istic, we layer nonphysical artistic controls which we discuss in
Section 5.3. And as each production produces new rendering chal-
lenges, we continue to add features and evolve the architecture.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

The Design and Evolution of Disney’s Hyperion Renderer • 33:3

To preserve our primary goal of artist productivity, in every-
thing we do we aim to maintain the following philosophies:

—Simplicity over flexibility. We try not to burden users with
non-artistic controls. For instance, we expose no ray bias op-
tions, no per-lobe or per-material sampling controls, and no
choice of integration strategy. Even for artistic controls, we
work to have as few as possible, and we review our controls
periodically to see what we can remove.

—General rather than specialized solutions. We prefer so-
lutions with robust behavior and predictable performance
over optimizing for special cases.

—Artist iteration over final frame efficiency. Approaches
that require manual tuning or time-consuming preprocess-
ing inhibit iteration. Unbiased progressive rendering allows
artists to iterate quickly on noisy images, ideally with final
frames only needing to be rendered once.

The natural result of this philosophy has been a march toward
increasingly brute-force solutions. As we describe throughout this
article (in particular, in Sections 4.2, 4.4, and 4.5), we have been
steadily replacing biased approximations with Monte Carlo solu-
tions. In every case the motivation for doing so has been artist
efficiency, and in every case the quality and consistency of our im-
agery also increased. Furthermore, having an in-house renderer
has afforded us wide latitude in tailoring solutions specifically to
the needs of our artists according to this philosophy.

3 SYSTEM DESCRIPTION

In this section, we present details about Hyperion’s architecture.
Hyperion’s high-level processing is shown in Algorithm 1.

3.1 Iterations

To provide progressive feedback, our rendering is divided into it-

erations, each forming a complete, consistent image, with subse-
quent iterations adding additional samples per pixel (SPP) to con-
verge toward the final image. We start at 4 or 16 SPP, doubling for
successive iterations to a maximum of 256 SPP per iteration.

The intervals between iterations provide an opportunity to per-
form various operations:

—Compute variance estimates and adjust pixel budgets for
adaptive sampling, discussed in Section 5.1.

—Refine the light-source importance cache, discussed in Sec-
tion 4.1.1.

—Write frame buffers to disk, allowing artists to review and
even perform compositing with the in-progress images dur-
ing long-running renders.

—Record checkpoint information allowing the renderer to be
restarted if interrupted.

—Refine photon maps, discussed in Section 4.3.1.
—Update the top-level hierarchy (Section 3.3) with tighter

bounds for recently expanded procedurals.
—Record per-iteration statistics.

While some of these operations are only valid between itera-
tions, updating data structures between iterations can also provide
an efficiency benefit. During an iteration, most data structures

ALGORITHM 1: Hyperion renderer pseudocode

1 function Render
2 RunOneIteration // generates initial cache points
3 calculate photon-map probability mass functions
4 while not done do
5 RunOneIteration
6 function RunOneIteration
7 generate & trace photons
8 generate camera rays
9 ProcessRays

10 update adaptive sampler
11 update cache points
12 save image files & checkpoint

13 function ProcessRays
14 for each rayBatch do
15 // Traverse:
16 cones ← group and sort rayBatch rays into cones
17 hits ← traverse scene, intersecting cones & their rays against geometry
18 // Shade:
19 hitGroups ← sort and group hits by shader and object
20 for hitGroup in hitGroups do
21 sortedHits ← sort hitGroup’s hits by face ID
22 for hit in sortedHits do
23 // these steps splat to framebuffers & generate scattered rays
24 integrate volumes
25 shade surface

are read-only, allowing lock-free sharing among threads. Between
iterations, the structures are write-only, avoiding the need for
read/write synchronization.

3.2 Coherent Ray Batches

Hyperion processes rays in batches to maximize coherence. We
process one batch at a time, first intersecting all rays in the batch
with the scene to generate hit points, and then shading the hit
points to splat emitted radiance times path throughput into the
frame buffer or generate new rays which are queued into future
batches. We use ray batches to improve coherence in a number of
ways:

—Primary rays are generated following a space-filling Z-order
curve.

—All rays (primary and secondary) are organized by dominant
semi-axis (±X | ± Y | ± Z) into separate batches, implying an
approximate front-to-back traversal ordering for each batch.

—Before traversal, the rays in each batch are recursively sorted,
first by origin, then time, then direction.

—Before shading, hit points are sorted by scene object and
mesh face index.

—Ready batches are organized into a stack, with the most-
recently filled batch therefore being the next batch to be pro-
cessed. This produces a wide depth-first traversal that im-
proves locality and keeps the number of pending batches in
check.

We observe that both traversal and shading coherence improve
with batch size and find 33 million rays to be the largest batch
size practical in our system.

3.3 Scene Traversal

Our scenes are composed of scene objects, each of which refer-
ences a traceable and a shader. Typical traceables are individual
meshes or collections of curves, spherical particles, or instances.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

33:4 • B. Burley et al.

Traceables intersect rays to produce ray hits, and each traceable is
responsible for its own traversal and acceleration structure, usu-
ally some form of bounding volume hierarchy (BVH) optimized for
its particular needs.

Achieving coherent ray traversal while maintaining efficient
traversal speed for individual rays presents a significant challenge
in global illumination rendering (Barringer and Akenine-Möller
2014). We separate our hierarchy into two levels:

—The top-level hierarchy intersects against the traceables’
bounding boxes, determining which traceables a ray may hit.
We trace 32-ray packets against this BVH.

—The bottom-level hierarchy intersects against a single trace-
able (e.g., its triangles). We trace individual rays against this
BVH.

Because of the large number of rays within each batch, we are
able to form coherent packets regardless of ray depth. For packet
intersection, we find it advantageous to use bounding cones, avoid-
ing the need to intersect the packet’s individual rays with each
bounding box; we find cone–box intersection to have similar cost
to single-ray intersection, and we intersect multiple cones at once
with SIMD. Additionally, we have found that large batch sizes are
useful for extracting sets of coherent ray streams compatible for
use with other packet traversal approaches, such as the one by
Fuetterling et al. (2015).

We load scene objects on demand to avoid memory overhead for
unreachable objects and to enable out-of-core rendering by allow-
ing evicted objects to be reloaded. Packets are traversed through
the hierarchy and queued at traceables that require loading. If
the memory necessary to expand a traceable would cause the
render process to exceed a prescribed memory limit, objects are
evicted in approximate least-recently-used order. Eviction occurs
in two stages, first shrinking traceables where possible, then fully
evicting. An example of shrinking is discarding the internal node
bounds of a BVH, which can easily be recovered from its leaf nodes.

While the main hierarchy only performs packet traversal of
batched radiance-querying rays, shaders may immediately trace
individual rays for other purposes. One such purpose is subsur-
face scattering, which is integrated locally and immediately within
the shader. Rays are also immediately traced for probability den-
sity function (PDF) evaluation of emissive geometry sampling (dis-
cussed in Section 4.1.2). In such cases, only a user-defined sub-
set of the scene is traced, most often corresponding to an individ-
ual mesh, and traversal coherence follows naturally from shading
coherence.

The way an artist or production pipeline might organize a scene
may lead to an inefficient top-level hierarchy construction with
large amounts of object overlap. For example, the base mesh for an
entire island may be a single scene object, overlapping the millions
of objects that populate the island. Worse, each type of instanced
object, such as each species of plant, might have a traceable repre-
senting a collection of instances covering the entire island. The ex-
treme overlap in these cases defeats the logarithmic cost advantage
of BVH traversal potentially making such scenes unrenderable.

To avoid excessive overlap in our top-level hierarchy, we split
large objects, including both individual meshes and instance

collections, into smaller parts. Rather than forming a separate
scene object for each part, we create entry points into each
object’s internal BVH and insert references to these entry points
into the top-level hierarchy. This system is generally similar to
and was developed concurrently with recent partial BVH re-
braiding techniques (Benthin et al. 2017), and entry points are an
interchangeable term with BRefs from partial re-braiding. Much
like in partial re-braiding, our entry point system is essentially
building the top-level BVH over sub-trees of the object BVHs in-
stead of directly over object bounds. Instead of building entry point
logic directly into the top-level BVH builder, we use a two-step
process where object BVHs are built first, then entry points are
calculated, and then the top-level BVH is built over entry points
using the same exact BVH builder as the object BVHs. Our termi-
nation criteria for calculating entry points incorporates two main
factors: the sum of an SAH-like heuristic measure for candidate
entry points versus the sum for the parent node of the candidates,
and the solid angle of each candidate entry point relative to the
camera.

3.4 Surface Shading

After traversal of each ray batch, we group the resulting hit points
by scene object for shading. Importantly, hit points for instanced
objects are grouped and shaded as if they were a single object.
We further sort the hit points for shading coherence within each
object; for meshes we sort by face, providing maximal coherence
for per-face textures (Burley and Lacewell 2008).

Shaders compute surface scattering, enqueuing new radiance-
gathering rays into a future ray batch. Shaders also add emitted
radiance, multiplied by path throughput, to the framebuffers. As
is standard practice, scattered rays are generated using multiple
importance sampling to combine BSDF and light sampling tech-
niques (Veach 1997). However, rather than tracing transmittance-
only rays for light samples, as is done with traditional next-
event estimation, all scattered rays gather radiance. More recently
though, we no longer allow rays generated via light sampling to
gather indirect radiance for reasons discussed in Section 4.5.

Any particular shader may be bound to multiple objects. To en-
able asynchronous shading of these objects, we create a local copy
of the shader for each object. Local copies allow shaders to modify
their state during shading without the overhead of locking or other
synchronization. This mechanism also allows us to arbitrarily mu-
tate the shader per object. For instance, a lighting artist may attach
object modifiers to various scene objects to override shader parame-
ters without the burden of creating and managing persistent copies
of the shaders. Concurrent threads preferably shade different ob-
jects, but when there remain no other objects to be shaded, we
create additional clones of each shader to allow multiple threads
to shade a single object.

Our prototype required no texture cache, as we typically have
sufficient shading coherence to amortize file access cost. However,
we now employ one, mainly to limit network I/O load. Texture data
access routinely exceeds our 6GB cache size, yet texture lookups
typically account for less than 5% of render time with I/O repre-
senting only a small fraction of that.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

The Design and Evolution of Disney’s Hyperion Renderer • 33:5

Texture filtering is based on the ray diameter, the diameter of
the ray interpreted as a cone with apex angle based on scattering
PDFs (Amanatides 1984; Nguyen 2007).

Our shaders also access additional data such as per-vertex at-
tributes and point clouds. Point clouds can be used for arbitrary
purposes, often to manipulate shading with animated effects, but
one type that is accessed on every shading point is the impor-
tance cache used for light selection, discussed in Section 4.1.1. All
of these data sources benefit from the coherence provided by our
sorted shading. In addition to improving data coherence, sorted
shading minimizes shader cloning and other costs related to con-
text switching between shading objects.

3.5 Volume Integration

After surface hit points are determined and sorted but before they
are shaded, we compute volume transmittance, in-scattering, and
emission along each ray segment. In-scattered rays are enqueued
into a future ray batch, and are identical to surface-scattered rays.

Because volume integration occurs as part of sorted deferred
shading, our volume data also benefits from increased coherence.
However, being tied to surface integration, this approach is only
practical for a small number of bounces. We discuss how we re-
cently addressed the need to render arbitrary numbers of volume
bounces in Section 4.5.

4 CASE STUDIES IN PRODUCTION-DRIVEN
DEVELOPMENT

In this section, we present selected cases of development in Hype-
rion driven by production needs.

4.1 Sampling Complex Lighting Environments

Complex lighting, both direct and indirect, presents a variety of
challenges. It is difficult to predict the specific lighting scenarios
that will arise in the middle of production, and even more difficult
to design and implement systems that are sufficiently and auto-
matically robust to all of them.

Big Hero 6 contained a city with hundreds of thousands of lights,
refractive globes around small bright light sources, a bedroom
lit by sunlight filtered through window slats, and a dusty ware-
house with visible rays of sunlight entering through small sky-
lights. Moana contained massive smoke plumes lit by lava and
ocean floors lit by refracted sunlight.

Sometimes it is tempting to provide artists with additional sam-
pling controls so they can manually tune the renderer to handle a
particular scenario. However, this approach can backfire. For ex-
ample, in Big Hero 6 we provided “window light samplers” that
could be placed in the windows of interior spaces to draw rays out
of them and reach the light sources on the outside. These turned
out to be very difficult to place correctly and to tune, and, when
combined with existing light samplers for outdoor lights, could re-
sult in oversampling those lights and undersampling the interior
lights. We have found that automatic sampling solutions are usu-
ally preferable when possible.

4.1.1 Cache Points. It is not unusual for movie scenes to con-
tain huge numbers of light sources. Big Hero 6 featured nighttime
city scenes that contained as many as a half million small, bright

Fig. 2. Scenes in Big Hero 6 featured anywhere from hundreds of lights

(top), to thousands of lights (middle), to hundreds of thousands of lights

(bottom). Our cache-points system allows for robust and efficient light

sampling in all of these scenarios.

lights, including directional sources such as street lights and car
headlights, as pictured in Figure 2. Our original approach of loop-
ing over every light at every shading point to build a probabil-
ity distribution for light selection became unusably slow in such
situations.

We experimented with hierarchical tree data structures for light
selection but found them difficult to make useful due to certain
edge cases and varied light types, in particular those with narrow,
highly directional IES profiles. We realized that the lighting did
not vary enough between nearby shading points to warrant gen-
erating a brand new probability distribution for each one, even in
scenes with many lights. We explored a number of possible ways
of caching and reusing light-selection information, and ultimately
designed and implemented a system we call cache points.

We generate an initial set of 100,000 cache points randomly dis-
tributed within individual scene object bounding boxes, followed
by a coarse render iteration to place cache points at a random sub-
set of path vertices, pruning points that fall within a target radius
of a previous point. Additional points are added during subsequent
rendering iterations in a similar manner. To populate each new
cache point, we loop over each light, estimate its potential contri-
bution to six oriented planes as well as an omnidirectional receiver
centered at the point. Then, for each of these seven distributions
we store a list of just enough lights to account for 97% of the energy

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

33:6 • B. Burley et al.

reaching the point (limited to at least 4 and at most 256 lights per
distribution) (Shirley et al. 1996). To account for rapid changes in il-
lumination between cache points, we put lights that are very close
to the cache point in a separate list. We also aggregate information
from each cache point’s neighborhood such that only nearest-
point lookup is needed during light sampling. The total size of the
cache point database is typically only a few MB. The time to gener-
ate the cache points is negligible and masked by the time required
to load and process the scene objects hit during the cache point
iteration.

To further improve sampling, we maintain a per-light visibil-
ity estimate at each cache point, conceptually similarly to the ap-
proach of Georgiev et al. (2012). We track the number of samples
directed to each light and compare this with the number of samples
that reach the light and receive a contribution. This information is
later used to reduce sampling of lights that were initially thought
to be important but which actually do not contribute. This system
significantly reduces noise in, for example, interior scenes lit by
sunlight entering through small windows, in which the mostly oc-
cluded sun would otherwise draw samples away from the other
light sources.

To generate a light sample from a cache point, we blend together
multiple direction-specific distributions based on the surface nor-
mal at the shading point, incorporate the nearby lights and the
learned visibility information described above, and then select a
light from the resultant probability distribution. Lights that do not
appear in the distributions tend to be undersampled and produce
fireflies, isolated anomalously bright pixels. We limit the impact of
fireflies using clamping and denoising (Section 5.1.2).

4.1.2 Emissive Geometry. Hyperion was designed so that any
object could be a source of light. In particular, the emission of any
surface could be driven by expressions and texture maps. While
we initially directly sampled a few explicit light types, we did not
have a way of identifying general objects as light sources a pri-
ori, determining the distribution of emission over their surfaces, or
sampling them in any way other than hitting them by chance with
BSDF samples. This was further complicated by lazy loading—we
could not know the distribution of emission over a surface that we
had not yet loaded.

However, late in the production of Moana, we encountered a
situation where the lack of emissive geometry sampling was a se-
rious problem. A hundred shots in the movie featured the lava
monster Te Kā whose emissive body was the main light source in
an otherwise dark environment (Figure 3). The concentrated and
bright streams of lava on Te Kā’s body were illuminating plumes
of smoke that permeated the scene, and, as a further complication,
there were also lightning bolts within the smoke. To converge to a
usable noise level, it was projected that each frame would take an
average of 450 core hours to render.

Before this point, we never had a pressing need to implement
emissive geometry sampling, but now we needed to come up with
a solution in a short amount of time. We decided to try reusing our
emissive-volume sampler for the emissive surfaces, thinking that
this would be a straightforward and effective approach. The first
step was to identify the emissive objects, which was easy because
emission already had to be enabled explicitly in each shader. We

Fig. 3. A production frame from Moana that required emissive geometry

sampling, since the primary source of illumination in the scene is the large

character “Te Kā” made of bright lava.

loaded these objects non-lazily when the renderer was launched,
and for each object looped over each triangle of its subdivided
mesh, evaluated the emission expression at the center of the trian-
gle, and stored the triangle and its power in a list. Then, for each
object, we built a volumetric grid, rasterized the relevant trian-
gle bounding boxes into it, and used the grid as a sampler. This
approach worked, but making it practical proved difficult. Higher
grid resolutions resulted in better sampling but were very mem-
ory intensive and slow to sample. And, as the grid structure was
not time-varying, moving triangles occupied far too much space
when rasterized and destroyed the sampling quality. We needed a
different approach.

We decided to try building a new light sampler from the
ground up. This light sampler would store the deforming emissive
triangles themselves and sample them directly. After identifying
an object’s emissive triangles as before, we would pass them
into this new light sampler, build a probability distribution over
them for sampling, and build a time-varying BVH over them for
efficient PDF evaluation. Building a view-dependent probability
distribution over the triangles for each shading point was too
computationally expensive for all but the simplest meshes, so we
constructed a fixed probability distribution based solely on the
triangle powers and drew samples from it in constant time using
the alias method (Vose 1991). We were initially concerned that
the power-based sampling would result in a poor distribution
of samples, but in practice it performed well. The triangle-based
approach was a significant implementation effort but in the end
produced cleaner code without the heuristics necessary for the
rasterization approach, and dramatically better sampling quality
for animated meshes with motion blur in particular.

Ultimately the improved sampling allowed us to render the
problematic Te Kā sequences twice as fast as before with less noise.
Independent improvements to denoising further improved the ren-
der times. In general, our emissive geometry sampling has proven
to be highly beneficial when used appropriately, although in some
cases the benefits do need to be weighed against the loss of lazy
loading and the expense of evaluating potentially heavy emission
expressions for potentially large numbers of triangles. So far, we
only build a single light sampler per single triangle mesh, where
each light sampler is a linear cumulative density function (CDF)
over all of the triangles in the mesh. In practice, we have not yet
encountered a case large enough to necessitate spatially splitting
the triangle list and building multiple CDFs per mesh, but in the

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

The Design and Evolution of Disney’s Hyperion Renderer • 33:7

event that we would need to do so, we envision splitting meshes
using the entry points system described in Section 3.3 and building
a linear CDF over all of the triangles in a given entry point for all
entry points, instead of in the entire object.

4.1.3 Path Simplification. For a caustic path to be discovered
by a unidirectional path tracer starting from the camera, a ray has
to be scattered from a diffuse surface in such a way that it hap-
pens to bounce off a shiny smooth surface and hit a small, bright
light source. Without a priori knowledge of the distribution of in-
direct light in a scene, this sequence of events is highly unlikely;
therefore, caustics are not sampled efficiently without more com-
plex techniques such as bidirectional path tracing (Veach 1997). As
the surface interactions leading up to the final specular surface be-
come more diffuse, bundles of camera rays become less coherent
and less likely to consistently reach the light source using BSDF
sampling alone.

During the production of Big Hero 6, we faced the problem of
caustics causing fireflies strewn across images. The caustic pat-
terns themselves were not particularly important artistically in
these cases, so rather than devoting a large amount of resources
to implementing a light-transport algorithm that can sample them
well, we attempted to get rid of the caustics with the smallest possi-
ble overall impact on images. One of the approaches we tested was
outlier rejection (DeCoro et al. 2010), but this required a significant
amount of memory, produced different results for different SPP
values, and resulted in significant energy loss for low SPP values.

We realized that if the final surface were more diffuse, direct
light sampling would make reaching the light more likely, and
that noise could thus be greatly reduced by increasing the rough-
ness of surfaces in secondary bounces to permit useful direct light
sampling (Kaplanyan and Dachsbacher 2013). We did not want to
eliminate all indirect specular effects, however, so we designed a
heuristic that increased the roughness proportional to the ray di-
ameter. The “wider” and more “diffuse” a ray became, the more we
would increase the roughness of subsequent bounces, thus elim-
inating difficult caustics without completely eliminating interest-
ing directional lighting effects like glossy–glossy transport.

Refraction presented another challenge. Increasing the rough-
ness of refractive surfaces was effective at eliminating noise, but
drastically changed the image in some cases. For example, in
scenes with sunlight entering a room through a glass window and
casting hard shadows, increasing the roughness of the window
blurred the shadows and greatly changed the character of the light-
ing of the scene. We quickly realized that a better solution for han-
dling smooth refraction was to go straight through these surfaces
without bending. For this to produce good results, we adjusted the
reflection coefficient such that rays passing straight through a win-
dow undergo the same amount of reflection from the front and
back surfaces as their original bent counterparts, and rays passing
out of a refractive object such as a pool do not experience total
internal reflection, which would otherwise prevent rays leaving
the object from covering the whole hemisphere. In particular, we
achieve these properties by replacing the relative index of refrac-
tion with its multiplicative inverse when a non-bending ray exits
the object.

Path simplification is our name for this set of features that mod-
ify BSDF properties in later bounces in order to eliminate difficult
caustics and thus reduce noise. Path simplification is always en-
abled unless we want to render a “ground truth” image for refer-
ence or debugging.

4.2 Fur Rendering in Zootopia

We knew Zootopia would require a city full of appealing ani-
mals, with appearances designed to match those of their real-life
counterparts, and authoring such a large variety of characters (ulti-
mately, 157 unique characters of 64 different species) was a daunt-
ing challenge. Our previous shading model (Marschner et al. 2003;
Zinke et al. 2008) was easy to control, but lacked energy conserva-
tion. This was sufficient for Big Hero 6 as most of the characters had
dark hair, but Zootopia had several characters with nearly white
fur, and our multiple scattering approximation (Zinke et al. 2008)
was making the fur look dark and dirty. Also, the shading model
was fundamentally a human hair model which had no ability to
differentiate the various species needed for Zootopia.

In addition to the authoring and shading challenges, Zootopia

presented geometric challenges for the scale of the fur in terms
of both memory to hold the geometry and render time to traverse
so many curves. There were up to 5,000 characters in a shot, with
typical characters having 2 to 10 million hairs, and with 9 curve
segments per hair on average and as many as 100 segments per
curve for characters with particularly long or curly fur such as the
sheep (see Figure 4 for examples).

4.2.1 Shading. We began with the energy-conserving hair
shading model of d’Eon et al. (2011), but used a near-field for-
mulation to avoid the expensive numerical integration over the
fiber width. We found that brute-force multiple scattering with this
model gave us the softness and richness we were looking for, and
the additional azimuthal roughness control provided species dif-
ferentiation, but we needed to further improve the efficiency and
controllability. Through the use of a novel fourth lobe and closed-
form logistic azimuthal distribution, we were able to gain enough
efficiency to make brute-force multiple-scattering practical. For
controllability, we derived single-scattering parameters from the
artist-specified multiple-scattering color by inverting the results
of a numerical scattering simulation. Our final model has six intu-
itive parameters (Chiang et al. 2016a) and has since been used on
all our animal and human characters in production.

4.2.2 Geometry and Traversal. We represent hair fibers as cubic
B-spline curves with widths that vary along the length of the curve.
Compared to pre-tessellated curves, splines are memory efficient
and provide high quality at any zoom level. Unlike commonly
used Bézier representations (Nakamaru and Ohno 2002; Woop
et al. 2014), which require four CVs for every segment, the B-spline
representation requires only one CV per additional segment after
the initial one. To further reduce curve memory, we quantize con-
trol point positions to 16-bit fixed-point numbers relative to the
bounding box of the containing set of curves. We store curve seg-
ments in a BVH, which can be even more memory intensive than
storing the control points. To resolve this, we quantize bounding

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

33:8 • B. Burley et al.

Fig. 4. Various scenes with fur in Zootopia: high albedo fur requiring ac-

curate multiple scattering (top), characters with complex color variation

using our intuitive color parameterization (middle), and crowds with lots

of furry characters requiring efficient geometric representations and effi-

cient traversal (bottom).

box positions to 8-bit fixed-point numbers relative to their parent
bounding box as described by Mahovsky (2005).

For ray-segment intersection, we follow the method of
Nakamaru and Ohno (2002), projecting each curve segment to a
plane perpendicular to the ray, recursively bisecting the segment
until an error tolerance is reached, and then performing linear-
segment intersection. At intersection time, we convert the 3D B-
spline segment to 2D cubic polynomial form within the ray’s in-
tersection plane. The cubic polynomial form allows more efficient
position and derivative evaluation by avoiding the need to repeat-
edly evaluate B-spline or Bézier basis functions. Rather than using
a fixed recursion depth precomputed from a specified error toler-
ance (Nakamaru and Ohno 2002), which could result in an arbitrar-
ily high number of recursions even for distant curves, we measure
the error at each traversal step and compare with the ray diameter.
We estimate this error as the sum of the difference between each
tangent vector and the linear-segment approximation. Segments
that are nearly straight, distant from camera, or intersected with
wide-diameter indirect rays require minimal recursion. In our typ-
ical production scenes, we find that the vast majority of ray seg-
ment intersections require no recursion with our error metric.

It is known that dense, diagonally oriented curve sets can per-
form poorly due to overlapping segment bounds (Woop et al. 2014).

Fig. 5. Different types of water in Moana: ocean with boat wakes (top),

shoreline with open ocean and character interaction (middle), and art-

directed sentient water (bottom).

Our approach is to automatically split long curve segments, adding
each sub-segment separately to the BVH. While this works well
for long, thin curve segments, it does not help with short, fat ones
as splitting will only worsen the overlap; artists simply avoid this
case. For instance, when artists decimate distant curve density for
rendering efficiency, and compensate by increasing curve widths,
they are also careful to decimate the CV density along the curves
to preserve the curve segment length-to-width aspect ratio.

4.3 Ocean Rendering in Moana

Moana contained by far the largest and most complex water scenes
our studio has ever produced. Water was present in almost all
shots, including vast ocean, boat wakes, splashes, shorelines, walls
of water, and highly art-directed sentient water (see Figure 5). Dur-
ing Moana, a dedicated pipeline (Garcia et al. 2016) was developed
for producing single large water meshes, generated from a level-set
compositing graph (Palmer et al. 2017) consisting of any number
of inputs, such as procedural ocean surfaces or voxelized level sets.

In this system, the mesh resolution is defined by the camera frus-
tum and off-screen geometry is kept at a low resolution, resulting
in meshes of an average size of around 2 gigabytes. This approach
avoids treating the different types of water as separate elements.
As an example, the miles away ocean at the horizon and close-up
spray or bubbles are a single mesh. Due to the level-set definition

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

The Design and Evolution of Disney’s Hyperion Renderer • 33:9

of the water surface, the resulting geometry is always watertight
and can be used as the boundary for the homogeneous volume
defining the scattering optical properties of the ocean water. The
volumetric appearance of the water is fully path-traced with phys-
ically correct scattering parameters.

We intended to include foam into the water rendering setup so
that we could blend seamlessly between clear water, turbid bubble-
filled water, and foam, but the research and development necessary
to deliver a production-ready system was too time-consuming.
Therefore, foam is modeled using standard volumes and particles
as separate elements.

4.3.1 Photon-Mapped Caustics. Refractive caustics through
clear water are a defining attribute of tropical shoreline water ap-
pearance, creating intricate patterns on the submerged sand as the
waves churn (see Figure 5, middle). Additionally, reflective caus-
tics cause subtle illumination on shoreline rocks and other nearby
objects such as boats on the open ocean. Incorporating these light-
ing effects into the shots in a realistic way was key in defining the
look of the water and increasing the visual complexity.

Rendering caustics is highly inefficient in a purely forward path
tracer like Hyperion and they do not converge in a reasonable
amount of time. While certain bidirectional techniques can resolve
such difficult features, we could not change the inherently uni-
directional nature of Hyperion’s streaming architecture just for
rendering caustics. Projective methods were deemed too labor-
intensive to do well on a large number of difficult shots. To ad-
dress realistic caustics, we implemented a limited photon-mapping
(Jensen 1996) subsystem that only renders ideal specular caus-
tics, only interacting with the water surface for reflection and
refraction.

In many cases, the photon maps needed to span large areas such
as a shoreline or large sections of shallow ocean seabed in un-
derwater shots. We addressed this by adaptively distributing pho-
tons. We start by distributing one set of photons uniformly over
the scene. Then, during the same initial iteration that distributes
cache points, we gather these photons, but instead of writing their
contributions to the image, we record their contributions into a
grid on the plane from which they were emitted. This grid is then
used to build a probability mass function (PMF) over the plane,
which is used to distribute a new set of photons before each ren-
der iteration. This system automatically results in a higher density
of photons within the camera frustum, near the camera, and on
visible parts of objects, as illustrated in Figure 6. This approach is
currently implemented only for narrow, infinitely far away lights—
since the emission directions are largely parallel, it is sufficient to
build a spatial PMF over the emitting plane. However, extending
this approach to work with diffusely emitting, finite lights should
be possible as well. For full generality, instead of building a PMF
on a plane, one could be built in primary sample space.

Our photon system does not support volume caustics, which
were instead modeled with cucoloris lights scattering inside the
ocean volume.

While the system is not capable of doing much more than spec-
ular water caustics and similar effects, it was largely automatic
and was employed in almost all shots with shorelines and boats.
The large number of shots containing water justified developing a

Fig. 6. An example of adaptive photon distribution. (a) and (b) show a

close-up of a small rock in a large environment rendered using the same

number of photons without and with adaptive photon distribution, respec-

tively. The context of the close-up is shown in (c) with a red circle around

the rock, and the probability mass function used for adaptive photon dis-

tribution is shown in (d) with the square water surface, camera frustum,

region around the camera, rock, and area behind the rock all clearly visible.

full subsystem for this specialized purpose. The limited scope al-
lowed us to optimize toward the specialized use case in Moana.
Later extensions of this system to partially support area lights also
allowed artists to find limited applications toward caustics from
ice in Olaf’s Frozen Adventure.

4.3.2 Halo Light. One of the challenges of rendering water was
that a physically correct sun caused very strong harsh sparkling
highlights which in many cases were noisy but also were undesired
for the look of the movie. Increasing the roughness of the water
shader uniformly blurred out the features and was not a satisfac-
tory solution to the problem. Instead, the sunlight was softened by
providing artistic control over a halo around the sun, emulating
the Mie-scattering halo around the sun’s disk.

Following our paradigm of simplicity, instead of giving full con-
trol over the halo with an expression, a two-parameter model
was devised that determines the shape of the halo. An important
attribute of the model is that the overall light intensity is con-
stant, avoiding any intensity changes while tuning the parameters.
While the halo light has been specifically developed to address the
look of water, it found its way into the standard toolset of lighters
for defining the shape and color of highlights, shadow terminators,
and shadow borders, as illustrated in Figure 7.

4.4 Unifying Subsurface Scattering, from Snow to Skin

For Big Hero 6, we used Normalized Diffusion (Burley 2015) as
our subsurface-scattering solution. It matches the Monte Carlo
reference well, and is efficient and easy to control. However, like
other diffusion approximations, it suffers from artifacts caused by

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

33:10 • B. Burley et al.

Fig. 7. A simple scene lit by a regular sun light (left), a sun light with a

user-defined halo (center), and a sun light with a tinted halo (right). The

halo can help shape the highlights, shadow terminators, and shadowed

borders.

Fig. 8. A production frame from Frozen Fever with characters using path-

traced subsurface-scattering snow.

the semi-infinite-slab assumption. Such artifacts were particularly
problematic in Frozen Fever where the snow monster, Marshmal-
low, is made of geometrically complex interpenetrating ice and
snow which exhibited both undesirable darkening in thin regions
as well as excessive light penetrating into crevices. Previously,
with Reyes rendering in Frozen, such snow ice integration was ac-
complished with ad hoc solutions that were labor-intensive, pro-
ducing not entirely satisfactory results, and inapplicable in Hype-
rion regardless.

4.4.1 Path-Traced Snow. For Frozen Fever we implemented a
volumetric path-tracing solution for the snow which integrated
with ice seamlessly and avoided the artifacts artists previously
struggled with. To make path-traced snow viable for production
rendering, as in Figure 8, we made a few simplifications. We treated
snow as a completely homogeneous volume with monochromatic
scattering. For rendering efficiency, we assumed index-matched
diffusely transmitting interfaces. Also, since snow generally has
uniform optical properties throughout, though unintuitive, we had
artists control snow directly using volumetric single-scattering
parameters.

While successful on a smaller scale, the fact that path-traced
subsurface scattering faithfully preserves all geometric details
posed surprising challenges rendering the larger snowscapes in
Olaf’s Frozen Adventure. For instance, snow skirts around trees
were often not closed and floated above the ground, and snow
clumps on top of other surfaces such as roofs interpenetrated, cre-
ating unwanted shadowing. To address geometric issues, we im-
plemented multi-object interface counting to determine when we
are inside the snow volume as well as a probe-ray heuristic that
attempts to handle open and transparent surfaces, but ultimately
artists needed to be more mindful of geometric correctness.

Fig. 9. The Stanford dragon rendered with IOR 1 in (a) shows overly bright

thin edges due to the lack of internal reflection. It can be fixed by using a

more reasonable IOR value, in this case 1.4 in (b). Dragon model courtesy

of the Stanford Computer Graphics Laboratory.

We also faced challenges relating to the plausibility of the scat-
tering parameters. In animated films, exaggerated light bleeding
into shadow is often desired and achieved by having higher scat-
tering distances. However, unlike diffusion, this conflicts with the
fact that path-traced subsurface scattering accurately represents
the thickness of objects. For example, the layer of snow cover-
ing rooftops in Olaf’s Frozen Adventure initially appeared to be too
dark since too much of the light passed through to the dark roof.
In these cases, we relied on artists to use painted masks to reduce
volumetric scattering in areas appearing too thin.

Computational efficiency was an additional challenge. Path-
traced subsurface scattering in snow using a plausibly high albedo,
that is, very close to one, requires simulating a very high number
of scattering events, which can be prohibitive. We found that ren-
dering such high albedo could be made practical using shell trans-
port (Müller et al. 2016) to take larger steps within the interior of
snow volumes, though in practice our productions have found it
sufficient to use slightly reduced albedo values for snow in con-
junction with higher scattering distances.

4.4.2 Path-Traced Skin. With the success of path-traced snow,
we wondered whether we could get similar benefits for other ma-
terials such as skin. The first challenge is that skin is not homo-
geneous and it is not intuitive for artists to directly specify single-
scattering parameters. As before with Normalized Diffusion, our
artists paint skin albedo maps. Analogous to our fur-color repa-
rameterization, we derive single-scattering parameters from our
Normalized Diffusion parameterization. Since our initial imple-
mentation (Chiang et al. 2016b), we have discovered that assum-
ing index-matched interfaces for internal scattering leads to overly
bright thin edges due to the lack of internal reflection as shown
in Figure 9. However, with the introduction of internal reflection,
the average path length is increased and so is the amount of vol-
umetric absorption, making our reparameterization dependent on
the index of refraction (IOR). We found that assuming an IOR of

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

The Design and Evolution of Disney’s Hyperion Renderer • 33:11

Fig. 10. A production render from Ralph Breaks the Internet: Wreck-It

Ralph 2 with characters using path-traced subsurface-scattering skin.

1.4 (only for calculating the fraction of energy internally reflected)
reasonably represents most materials, and thus we rederived our
single-scattering parameters for this assumption:

α = 1 − e−11.43A+15.38A
2−13.91A

3
,

s = 4.012 − 15.21A + 32.34A2 − 34.68A3 + 13.91A4,

σt = 1/(ds),

where the artist-specified surface color A and scattering distance
d are internally converted to the single-scattering albedo α and
extinction coefficient σt for rendering.

Ideally, an accurate skin model should be layered and heteroge-
neous, though for artistic controllability we continue the widely
used non-physical approach of modeling skin as a spatially vary-
ing homogeneous volume (Jensen et al. 2001). Modeling skin this
way with chromatic scattering can produce excessive coloration
noise, compounded by the fact that highly saturated color bleed-
ing is often exaggerated in animated films. We minimize this col-
oration noise by sampling each color channel proportional to its
single-scattering albedo (Chiang et al. 2016b) and we find the re-
sulting rendering efficiency surprisingly similar to diffusion.

By matching our Normalized Diffusion parameterization, we
were able to re-render existing characters, and artists generally
preferred the path-traced result as it enhanced details that are of-
ten blurred away by diffusion. However, to work around the ar-
tifacts and limitations of diffusion, the characters had been mod-
eled with exaggerated creases and wrinkles and used hand-painted
scattering masks. For this reason, existing productions continued
to use diffusion, but path-traced subsurface scattering is now be-
ing used in all current productions on all materials from snow to
skin (see Figure 10).

4.5 Rendering Cloudscapes

The volume rendering system developed during Big Hero 6 em-
braces the sorted-deferred philosophy by using splitting and

providing scattered rays to Hyperion’s batching system, rather
than immediately redirecting the incoming ray upon scattering.
Upon encountering a surface intersection, before shading, Hy-
perion estimates the transmittance using residual ratio tracking
(Novák et al. 2014) and builds a probability density function for
sampling scattering distances. The PDF draws its form from the
transmittance estimate, the volume extinction, and a fluence es-
timate gathered from the cache points. Multiple importance sam-
pling is performed between these contributions. Figure 11 (left)
illustrates the splitting and PDF building. A more detailed descrip-
tion of the approach can be found in the course notes by Fong et.
al (2017). The fluence estimate generated from the cache points
has a similar effect on the sampling as the equiangular impor-
tance sampling of lights (Kulla and Fajardo 2012): the PDF is large
where a large in-scattering contribution is expected. While gener-
ating a fluence estimate from the cache points is more flexible than
equiangular importance sampling, it is also more expensive due to
the searches for the nearest cache point.

To amortize the computational cost associated with expensive
PDF construction, the PDF is sampled multiple times and splitting
is employed to generate multiple in-scattering rays, which are en-
queued into the ray-batch system.

By using a large splitting factor, this strategy is efficient at ren-
dering low-order scattering, producing high-quality estimates at a
high cost per sample. Unfortunately, recursive invocation becomes
prohibitively expensive for high-order scattering, such as in clouds
and other high-albedo volumes.

4.5.1 Tracking-Based Volumes. While higher order scattering
can be approximated with various tricks, we found that consistent
and realistic cloud appearance was achievable only by integrating
all of the high-order scattering, up to hundreds or even thousands
of bounces.

To achieve the high-order scattering, we decided to use lighter-
weight tracking algorithms which do not build a PDF explicitly
as the previous volume system did. In the tracking approach, the
ray scatters and changes direction inside the volume, in contrast
to being fully traced to the next surface intersection and spawning
child rays along the way (see Figure 11). The resulting estimates
are of much lower quality than in the previous strategy for direct
illumination and transmittance, but also come at much lower cost
and therefore allow many more bounces to be calculated. A more
detailed description of the difference of both strategies is given in
Fong et al. (2017).

Standard delta tracking, as a monochromatic estimator, limited
our use of colored volumes. In our recent publication (Kutz et al.
2017) we introduced a spectral tracking algorithm that removes the
restriction of delta tracking being limited to monochromatic ex-
tinction, as well as a decomposition tracking algorithm that offers
the same sampling quality as delta tracking with fewer volume
lookups. Leveraging the mathematical framework underlying our
new tracking algorithms (Galtier et al. 2013), we have also been
able to extend our trackers to gather heterogeneous volumetric
emission at multiple points along each ray—we can gather emis-
sion at all collision locations by setting the absorption/emission
probability to one regardless of the scattering and null-collision
probabilities. To perform empty space detection and deliver the

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

33:12 • B. Burley et al.

Fig. 11. In our old volume system (left), before shading a surface hit, a detailed PDF (blue) is built along the ray segment encoding transmittance, extinction,

and a fluence estimate generated from the cache points. In-scattering samples are drawn and enqueued into a future ray batch. In our new volume system

(right), a ray enters the volume and scatters many times based solely on the local scattering properties of the volume. Shadow rays (dashed) are used

in conjunction with next-event estimation to importance-sample direct lighting contribution and enqueued into a future ray batch only after completely

exiting the volume.

volume parameter bounds for the tracking, we use an adaptively
built octree using the partitioning metric of Yue et al. (2011).

4.5.2 Similarity Relation. As highly forward-scattering media,
clouds present difficult performance challenges. Anisotropic scat-
tering distributions increase noise and require more samples to ad-
equately converge, and short scatter distances require more rays
to be traced.

Transformations of volume parameters that result in similar
radiance distributions are referred to as similarity relations (or
sometimes similarity theory) and allow volume parameters to be
changed while keeping the large-scale appearance unchanged. For
high-order scattering, we desire to reduce the highly anisotropic
scattering toward more isotropic scattering. A first-order relation-
ship between scattering coefficient μs , the mean cosine of the
phase function д, reduced scattering coefficient μ∗s , and reduced
mean cosine д∗ was derived by van de Hulst (1974):

μs (1 − д) = μ∗s (1 − д∗).

Using the reduced scattering coefficient and mean cosine substan-
tially improves render times by increasing scattering distances and
reducing the total number of bounces, and it significantly reduces
noise by making direct light sampling more effective. We find that
smoothly interpolating between anisotropic and isotropic scatter-
ing based on bounce depth provides a nice balance between im-
proved efficiency and accurately reproducing important optical ef-
fects. In particular, we currently linearly interpolate д∗ from д to
zero between the 5th and 20th bounces and then solve for μ∗s using
the aforementioned relationship. The lower and upper bounds of
the extinction coefficient in a particular region of space, used by
our trackers, also need to be interpolated appropriately.

4.5.3 Light Sampling Without Path Splitting. In our previous
volume system, the path was split at each scattering event to com-
bine light sampling and phase function sampling techniques. As
with our surface scattering, each scattered ray was allowed to con-

tinue the path equally, gathering both direct and indirect radiance.
While this strategy worked well for surface-surface and surface-
volume interactions with low-albedo volumes, it potentially pro-
duced an unbounded path tree in a high-albedo volume. To prevent
this, we required aggressive Russian roulette as well as an indepen-
dently controlled volume-bounce limit to prevent ray explosion.

In the new volume system, to enable high-albedo volume in-
tegration with unbounded path length, we have eliminated path
splitting. Instead, rays generated via light sampling are no longer
allowed to undergo further scattering either in the volume or from
a surface.

Before being dispatched into the ray-batch system, light sample
rays are first traversed immediately through the volume to com-
pute transmittance, using Russian roulette to prevent overwhelm-
ing the batch system with such rays in a dense volume. When a
surface might penetrate the volume, immediate surface traversal
is performed to limit the integration distance through the volume.
Surface shading is still deferred through the batch system as be-
fore. Figure 11 outlines the differences of the two volume integra-
tion strategies, and Figure 12 shows equal-time renders of the same
cloud using the two volume systems.

5 MAKING PATH TRACING PRACTICAL FOR
PRODUCTION

In this section, we discuss how we process, troubleshoot, and art-
direct rendered images.

5.1 Dealing with Monte Carlo Noise

Residual noise is a fundamental concern in a Monte Carlo renderer
like Hyperion. We use several techniques to cope with noise,
improving visual quality or saving render time by allowing us to
reduce SPP.

5.1.1 Adaptive Sampling. Noise in a Monte Carlo render is dis-
tributed nonuniformly since the light paths and materials vary

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

The Design and Evolution of Disney’s Hyperion Renderer • 33:13

Fig. 12. Equal-time comparison of a cloud rendered using our old Big Hero 6-era volume rendering system (left) and our new tracker-based system (right).

The old system is limited to 254 bounces (somewhat low-order scattering for high-albedo volumes), yet still produces a noticeably noisier image than the

new system. The new system produces a less noisy image while also supporting efficient high-order multiple scattering.

across the image. Rendering the entire image with a constant SPP
would waste samples on the less noisy areas. Ideally we would
want each pixel to use the minimum SPP necessary for that pixel.

Hyperion’s adaptive sampler interprets the requested SPP as an
overall sample budget rather than a per-pixel maximum. At the
start of each iteration, samples are allocated to each pixel propor-
tional to the pixel’s variance (see Section 5.1.6). The variance es-
timates are first blurred because the estimate is noisy and pixels
near a high-variance, difficult-to-sample pixel are likely also diffi-
cult to sample even when their variance is low. Since variance in
motion-blurred images tends to smear along the direction of mo-
tion, this blur uses an anisotropic kernel based on the structure
tensor of the variance image.

We have encountered several adaptive sampling challenges:

—Fireflies: To prevent the adaptive sampler from sending so
many samples to fireflies that the rest of the image suffers, we
clamp the variance estimate and variance drives the number
of samples at a less than linear rate (though this may limit
adaptivity).

—Matte Render Passes: These render passes output mattes
and geometric information without rendering color. Since
noise in rendered color cannot guide the adaptive sampler,
it uses the variance of the mattes themselves.

—Sample Budget for Excluded Objects: Artists often parti-
tion the scene into separate render passes such as character
and environment passes (see Section 5.3.4) where excluded or
“held out” objects are rendered as black on camera hits. Ide-
ally, separating objects into passes should not significantly
affect the overall sample budget for the scene as held-out ob-
jects should require minimal samples. To achieve this, Hy-
perion’s adaptive sampler uses a convergence threshold to
detect such pixels, and once a pixel is deemed converged, its
remaining SPP is removed from the render process’s sam-
ple budget. This is a conservative threshold that most pixels
never reach, intended solely to prevent sample budget infla-
tion due to held-out objects.

—Alpha Inconsistency Between Render Passes: Separate
render passes are composited simply by adding their color

and alpha. Adaptive sampling can cause different SPP counts
to be used for the same pixel in each pass, and thus different
alpha sampling. This can cause compositing artifacts such as
leakage along the edge of geometry since alphas do not sum
to exactly one. We solve this with our consistent alpha feature,
which applies adaptive sampling to color but renders alpha
using the same number of samples for every pixel and render
pass.

—Subpixel Objects: Isolated subpixel objects such as dust par-
ticles can be entirely missed if the convergence threshold
considers the containing pixel “done” before the object is hit
for the first time.

—Adapt Sampling to Denoising: We plan to integrate de-
noising into the adaptive sampler, similarly to the approach
of Rousselle et al. (2012). This would drive adaptive sam-
pling by the denoiser’s estimate of post-denoising variance,
saving render time on areas which denoise well, though it
does require the renderer to run the denoiser after each
iteration.

—Adaptivity Limited by Iterations: The adaptive sampler
updates the sample allocation only at the end of iterations
so it cannot fully equalize noise levels (e.g., a 128 SPP ren-
der had only three opportunities to adapt—after 16 SPP, 32
SPP, and 64 SPP). Reducing iteration sizes would allow more
adaptivity, but smaller iterations would be less efficient (see
Section 6.2).

—Localized SPP Control: Users have suggested adding user-
specified per-object SPP controls but that would run counter
to our philosophy of simplicity over flexibility. When noise
problems arise, we prefer to investigate the underlying
causes (e.g., suboptimal importance sampling in a particular
shader) or address the problem more broadly (e.g., adaptive
sampling).

—Post-Render Compositing Adjustments: Exposure ad-
justment in compositing (Section 5.3.8) changes the visibility
of noise in different parts of the image, so the adaptive sam-
pler’s goal of spatially uniform noise levels is not optimal.
Consequently, we discourage making extreme composite-
time exposure adjustments.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

33:14 • B. Burley et al.

5.1.2 Denoising. A major concern when we decided on Monte
Carlo rendering and Hyperion for Big Hero 6 was long render
times. It would have been impossible to render the movie on time
without post-render denoising.

Our denoiser is inspired by the work of Li et al. (2012) and
Rousselle et al. (2013). See Figure 13 for an example from Moana.
It spatially and temporally filters the rendered images using a
spatially varying kernel, trying to smooth away noise without
blurring the image’s details.

Hyperion writes and the denoiser reads a “feature” image, which
contains these layers:

—Diffuse and specular: the rendered color decomposed into
separate “specular” and “diffuse” parts; radiance contribu-
tions are splatted into diffuse and specular framebuffers
proportionally to the relative strengths of the diffuse and
specular lobes of the first surface the camera ray hits.

—Albedo: the surface color (including texture)
—Surface Normal Direction

—Depth

—Forward and backward motion vectors

—Variances of diffuse, specular, albedo, surface normal, and
depth (see Section 5.1.6)

To do temporal denoising, the denoiser reads the previous, cur-
rent, and next frames (requiring the denoiser to run after all three
frames are done rendering). The denoiser uses motion vectors to
pre-warp the previous and next frames to the position of the cur-
rent frame.

The denoiser does a weighted average of nearby pixels and ad-
jacent frames, with a different non-symmetric kernel at each pixel.
Weights are calculated to draw from nearby pixels according to the
similarity of their color and features. The sensitivity of similarity
is determined by the corresponding variances.

Fireflies have extremely high amplitude, which could cause a
bright “smudge” on the image even after denoising. Our denoiser
detects fireflies as pixels with much higher variance than their
neighborhood’s average variance. It fully removes those fireflies,
replacing them with data from their neighborhood. This actually
causes energy loss (darkening of the image) but it is preferable to
preserving the energy as a bright smudge.

Our original denoiser excessively blurred the fine detail in hair
and fur: the denoiser is cued by the surface-normal-direction fea-
ture, but that is not well-defined for thin curves like hair (whose
normal varies across the subpixel diameter of a hair). On Big Hero 6,
Hyperion wrote zeros to the “normal” feature; the denoiser de-
tected that and limited the amount of filtering on hair to prevent
blurring hair’s details. This worked well enough since that show’s
characters mostly had dark hair.

Some characters in Frozen Fever and Zootopia had blonde hair
and bright fur, where detail is more visible and noise is a big-
ger problem than on dark hair. The denoiser initially either kept
too much noise or blurred details too much. We changed the hair
shader to output hair’s tangent direction into the feature image’s
“normal” layer. The tangent direction of hair is well-defined and
stable across a pixel and it is well-correlated with visible features
in the image. This let the denoiser effectively filter hair without
over-blurring it.

On Moana we found that the denoiser blurred details in Te Kā’s
volcanic smoke clouds, which are rendered volumes. The prob-
lem was that volumes lacked the geometric features which nor-
mally cue the denoiser: surface normal direction, surface color, and
depth. We solved this by making the volume renderer calculate
normals based on the volume’s gradient. This is especially useful
for dense detailed volumes such as smoke clouds.

The denoiser is used on most production shots, and is run au-
tomatically unless disabled. The denoiser lets artists render at
1/4th to 1/8th as many samples per pixel as they would oth-
erwise need, saving significant compute time and giving faster
turnaround.

5.1.3 Manual In-Render Techniques. For compositing flexibil-
ity, artists usually split the scene up into separate render passes
for different categories of elements, such as characters versus the
environment. This also lets lighters choose the SPP which is best
for each render pass instead of using the worst-case SPP for all the
elements.

When a particular light is causing noise, artists may split that
light out into a separate render pass. The pass often renders with
less noise since no other lights draw light samples; all light samples
are aimed at the problematic light. Hyperion’s emission-category
render outputs (Section 5.3.5) make it easy to tell if noise is due to
a particular light.

5.1.4 Manual Post-Render Techniques. When an element looks
the same over several frames, the lighting artist may render a sin-
gle source frame at high SPP and use that held frame for several
target frames in the composite.

Reprojection is a generalization of a held frame; it reuses a single
high-SPP source frame for several target frames even if the element
or camera is moving. The composite reprojects the source frame
onto the element’s surfaces of a target frame using that frame’s
camera transformation and geometry. Where a surface is visible
in the target frame but not in the source frame, the composite out-
puts a sliver render mask, which Hyperion uses to render only the
requested pixels.

On scenes with limited motion, we sometimes do motion-aware
multiple-frame averaging in the composite, making sliver renders
if necessary to fill in small areas of disocclusion.

Lighters sometimes apply defocus blur and motion blur in com-
positing, turning those effects off in the rendered scene and pre-
venting associated noise.

5.1.5 Filter Importance Sampling. Early versions of Hyperion
used a classic image reconstruction filter, which splatted each sam-
ple to a three-by-three pixel region of the framebuffer (weighted
by the filter). This caused a sample’s noise or firefly to affect mul-
tiple pixels, making denoising and firefly removal difficult. It also
made variance estimation more difficult since noise is correlated
among neighbors.

We solved those problems with filter importance sampling (FIS)
(Ernst et al. 2006). We splat each sample to only one pixel, weight
all samples equally, and choose sample locations relative to pixel
centers with likelihoods proportional to the reconstruction filter’s
weight.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

The Design and Evolution of Disney’s Hyperion Renderer • 33:15

Fig. 13. Our denoising process takes as input an unconverged render (left, from Moana) and a number of feature buffers, and produces a final-quality image

with minimal artifacting and smoothing (right). In this example, the input unconverged image was rendered with 128 SPP.

With FIS, noise is uncorrelated between pixels, and appears
as higher frequency “salt and pepper” noise rather than “blurry”
noise. Ernst claims that FIS reduces noise since samples no longer
have implicit reconstruction weights, about which the light and
surface sampling system would be unaware.

5.1.6 Variance Estimation. Hyperion estimates the variance of
each pixel’s rendered color and its diffuse and specular compo-
nents to drive adaptive sampling, guide the denoiser, and report
MSE statistics to the user. The naive approach would compute
the variance of the individual samples’ contributions to a pixel.
But it would be difficult to compute sample variance in Hyperion
since multiple bounces of a single camera sample are splatted onto
the framebuffer at different times—we never have access to the
total contribution of a single camera sample. Using sample vari-
ance would also bias the variance estimate since low-discrepancy
samples are correlated rather than independent samples (Rousselle
et al. 2012).

To avoid these difficulties, Hyperion estimates rendered color
variance using a “two-buffer” approach (Dmitriev and Seidel 2004;
Rousselle et al. 2012). Hyperion has a pair of “half-sample” frame-
buffers for color (and for specular and diffuse). Camera samples are
partitioned into one or the other of these buffers in a randomized
shuffled order. We prevent cache points from coupling correlated
noise into both buffers by generating independent cache points for
each buffer. At the end of an iteration we estimate the variance of
each pixel from the difference of the two buffers. This estimate is
noisy so the adaptive sampler and denoiser spatially filter it.

In addition to variance of diffuse and specular rendered color,
the denoiser needs the variance of the albedo, normal, and depth
features. These are estimated as a simple sample variance. This fits
easily into our architecture since the values of these features are
known on the first hit; we do not need to wait for results from
subsequent bounces.

5.2 Analyzing/Understanding Render Processes

While one of the commonly stated advantages of path tracing is
simplicity, a complete full-featured system for production render-
ing inevitably comes with a certain level of complexity. To allow
artists and technical staff to get the most out of the software, the
system needs to be comprehensible, user-friendly, and as trans-

Fig. 14. Hyperion’s statistics viewer organizes, formats, sorts, and

searches render statistics.

parent as possible. Most commonly, a user will want to ask where
the processor time is being spent, what is expensive in terms
of memory use, or why the rendered image does not meet their
expectation.

In addition to a typical render output log, Hyperion provides a
comprehensive statistics reporting system. Statistics are available
both for in-progress renders and after the processes finish, in JSON
statistics files and as metadata in OpenEXR images.

Hyperion’s interactive statistics viewer (Figure 14) is a Java-
Script/web presentation of render statistics. This is available in
Hyperion’s interactive render viewer, in a stand-alone program,
or in a web page served by Hyperion’s internal web server or an
intranet web server.

Due to the scale of production scenes, the statistics content it-
self can become overwhelming—“information overload” kicks in

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

33:16 • B. Burley et al.

quickly. The breakdown and formatting of statistics into categories
with sortable columns makes large amounts of data much more di-
gestible. An example would be viewing a table of scene objects and
sorting by expense, whether that is memory footprint or shading
time. Once a particularly expensive shader has been identified, live
profiling can be enabled to identify hotspots at a finer level of gran-
ularity. The output statistics can also be consumed by automated
processes—we are able to identify scene objects that make a neg-
ligible contribution to the final image as candidates for culling, by
finding surfaces hit by a very small number of indirect rays.

Other useful tools for render analysis are a path inspector, also
integrated into our interactive viewer, diagnostic render outputs
and shaders, and a variety of options for geometry export. A devel-
oper might wish to write out displaced tessellated meshes, cache
points, or bounding volume hierarchies for debugging purposes
when investigating support issues from artists.

Where possible, we try to associate errors with a scene object
and/or an image location. During shading, assertions can throw
exceptions that are then caught by a custom handler, an example
being attempted normalization of a zero-length vector. The corre-
sponding pixel is then marked with an “X” using negative values.
This allows the markers to be easily removed from the image, and
provides prominent visual indicators of problematic areas in addi-
tion to lists of errors or warnings by type.

In terms of errors and warnings, the general philosophy for Hy-
perion has seen a shift during development. Initially, problems that
stem from the input scene were not just flagged but handled in a
manner that forces fixing of the data. Over time, this strictness has
moved more toward resilience—the system is attempting to pro-
duce the best result it can with what it is given, while still pro-
ducing localized reporting to encourage user correction of scene
data.

5.3 Artistic Control in a Physically Based Renderer

While Hyperion is a powerful path tracer with an array of features
that make creating beautiful photorealistic imagery a straightfor-
ward process, artists at Walt Disney Animation Studios are rarely
asked to just do that. Every frame of the film is a carefully crafted
work of art, aspiring to the vision described by the directors, art di-
rectors, production designers, and lighting leadership. Artists are
constantly challenged to hit decidedly non-physical goals within
a limited amount of time and with finite compute resources. This
section explains how artists use various tools, both in and outside
of the renderer, to achieve art direction and efficiently craft the
final frame.

5.3.1 Transport Modifiers and Exclusive Lights. Sometimes ac-
curate global illumination may not achieve the desired artistic ef-
fect. Certain objects may bounce too much or too little indirect
light into the environment. Or the director may give a note spe-
cific to just one element while approving the rest of the scene’s
lighting. In these and other cases, the light transport must be al-
tered in a localized way.

Using transport modifiers, a lighter can scale the light transport
between two elements (objects or light sources), or groups of ele-
ments, within a scene. For example, an artist could define a trans-
port modifier to cut the energy between a particular object and

light by half. When a ray hits the object, the renderer records the
interaction by attaching a tag to outgoing rays. If a ray from the
object reaches the light, the system recognizes that a relationship
exists, and cuts the throughput by half for that ray. But if the ray
hits anything else, the transport modifier is disregarded.

A variant of transport modifiers can be used to localize lights to
particular elements. Lights marked as exclusive lights contribute
only to objects that have a defined relationship with the light. An
artist may add a rim light exclusive to a character, for instance,
because there is a certain appeal to a slightly backlit character even
when there is no physical basis for it, and because it helps separate
the character from their environment to focus attention on them.
Global lights can be locally altered in a similar way. For example,
the artist may widen the key light just for a character to create
softer shadows on the character than the environment. To do this,
the artist could use a transport modifier to eliminate the global
key light’s effect on the character and add a widened key light
exclusive to the character.

Transport modifiers are a powerful tool for artists to control
light transport in non-physical ways in their scenes, but have
limitations as well. Control between a few small groups of ob-
jects, as described above, is simple to describe. However, to control
light transport between many large groups of objects, the data-
management burden begins to grow, especially when complex in-
clusion/exclusion relationships are necessary.

5.3.2 Region Grads. Similar to Pixar’s Rods (Hery et al. 2016),
we allow artists to adjust light contributions within volumetrically
gradated shapes or regions within the scene. Additionally, our re-

gion grads can be used in arbitrary ways within material shader
expressions. For instance, a geometry mask expression can refer-
ence a region grad to cut away part or all of a surface, for example,
to let light show through a hole in an off-screen object, or aspects
of surface reflectance can be modulated, such as reducing the spec-
ular response. Region grads thus give artists great flexibility and
locality in addressing director’s notes.

For rendering efficiency, region grads are implemented as part
of shading rather than as a volumetric effect. Light shaders evalu-
ate the region grad using the origin of the ray, allowing the light’s
contribution to be modulated at the lit surface, for instance to ac-
centuate the shadowing. Surface shaders evaluate the region grad
using the surface hit point, with the result able to be used for any
part of the material shading.

5.3.3 Shadow Shaping. Lighters often want very specific con-
trol over light and shadow in achieving the art direction of their
scene. They craft custom IES profiles (Illumination Engineering
Society of North America 1991) to control the emission of a light,
and use cucoloris images to craft specific light and shadow shapes
in the image. This can be a very labor-intensive process, depend-
ing on the specifics of the control they are trying to achieve, but
is used often either to fake a particular shadow that is not in the
scene, or replace a shadow from the environment that is affecting
the character in an unappealing way. Note that replacing a shadow
requires two render passes, one to render the object casting the
unwanted shadow, and another with that object removed and the
replacement shadow being cast onto the other objects in the scene.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

The Design and Evolution of Disney’s Hyperion Renderer • 33:17

For a cucoloris effect, an artist could simply place a desired
shadow shape in the path of the light, as in a practical spotlight,
but the shape would be blurred out unless the spotlight’s rays
were perfectly focused (which is never the case). Instead, our light
shader projects the cucoloris image to the lit surface, using an
artist-defined projection, and then multiplies the cucoloris into
the light’s overall contribution at each surface point. While non-
physical, this gives artists the control they need.

5.3.4 Render Passes. The image generated by the straightfor-
ward execution of Hyperion is rarely the final image used in a film,
even using all of the controls described above. Artists separate and
reassemble various outputs of the render process to achieve a given
art direction in a given amount of time.

Render passes are completely separate renders for different com-
ponents of the image generated by artists. Characters are often
broken out into their own pass, for example, but the artist may
also break out particular foreground objects or objects they know
they will want to manipulate after rendering. There are two main
reasons for this, and both are factors in almost every case. Render
passes give artistic control over some facet of the image, and also
allow an artist to iterate without having to re-render the entire
frame each time.

In a global illumination renderer, each render pass must still pro-
cess the entire scene for accurate indirect light transport. This is
not as inefficient as it seems. For instance, in a character pass, the
environment is “matted out,” rendering black on camera hits and
contributing only to indirect lighting. Though there is still addi-
tional overhead with each pass, the total number of pixels that
compute full GI is roughly the same as a single-pass render with
no matting.

There are cases, however, where the artist deliberately excludes
objects from some passes, for control or for render management. A
particularly heavy volume pass, for instance, may be rendered in a
separate pass at a lower resolution or with fewer ray bounces, and
left out of other passes to speed them up, even accepting that the
effects of the light transport through the volume on those other
passes may have to be faked.

5.3.5 Render Outputs and Emission Categories. Within a single
render pass, the resultant image is sometimes important, but more
often artists identify components of that image that they want to
assemble artistically. While rendering a character, an artist may
want to manipulate the hair separately from the character, for ex-
ample, using a matte generated from the hair. Or they may want to
output contributions from specific light groups into separate im-
ages for post-render rebalancing.

Various types of render output images allow artists to gather
the building blocks they will want to reassemble in creative ways
when compositing the final image, all rendered in a single run. For
instance, each light can be assigned an emission category, with in-
dividual categories producing separate render outputs.

5.3.6 Path Classifications. An artist may want to not only
change the effect of a given collection of lights on a character’s
hair, for instance, but may want to dial the effect in its various
forms. The direct diffuse illumination from that collection of lights
may be fine, but the specular may be too harsh. Or the direct

illumination from that collection of lights may be fine, but the indi-
rect diffuse contribution of those lights bouncing off a nearby sur-
face onto the character may be too bright, or not saturated enough.
In such cases, path classifications allow an emission category to be
broken down into its constituent types of light paths. Addition-
ally, path classifications can be applied to transport modifiers to
localize the modification to a portion of the light transport.

Path classifications are similar to “light path expressions”
(Heckbert 1990), but differ in key ways. A fixed set of path classifi-
cations, light source, direct specular, indirect specular, direct diffuse,
indirect diffuse, caustic, and volumetric, provides a simple, consis-
tent interface to artists that directly addresses their needs. Hav-
ing a fixed set also allows efficient implementation, requiring only
a few bits on each ray to represent the current path type, and a
trivial state machine to update the path type with each scattering
event. Importantly, path classifications, like emission categories in
general, are energy conserving by design—because the classifica-
tions are mutually exclusive, and because each light can only be
assigned to one emission category, any given ray contributes to
only one render output. Artists can trust that if they add all the
emission render outputs together, they will get identical results to
the non-decomposed image.

5.3.7 Mattes and Deep Mattes. Artists use mattes they generate
from renders, as well as those they craft from the results of ren-
ders using custom tools in the compositing engine. This gives them
further flexibility to break apart render outputs into smaller com-
ponents, to nuance some particular part of an image. Eye mattes
are very common because there is often considerable art direction
to make the face and especially the eyes appealing.

Deep mattes provide additional flexibility beyond ordinary “flat”
image mattes. A deep matte contains various attributes such as
mesh name, element name, material name, and so forth, that may
be keyed off of to derive various flat image mattes at composite
time. Unlike more general deep output images, these are quite ef-
ficient. They are generated using a low-SPP utility pass requiring
only camera hits, and samples within each pixel are collapsed to
the smallest unique set of attributes. The attributes themselves are
also stored as integers, using the same hash function as in the com-
positor to allow artists to select by name.

5.3.8 Putting it all Together. In-render tools like transport
mods and region grads are powerful but require re-rendering to
make adjustments, and sometimes due to resource contention or
schedule pressure, re-rendering can be a prohibitive requirement.
For this reason, artists tend to over-generate render outputs to give
as much flexibility as possible in responding to director notes on
their scene. A final composite graph will have hundreds of nodes in
it, reassembling the path classifications of the emission categories
of the many render passes that were broken out from the final im-
age, crafting a final image that achieves the artistic goals on an
often demanding schedule. Each artist finds a balance between the
artistic control these hundreds of distinct images can give, with
the gigabytes or even terabytes of disk space they can take up and
the slowness that can ensue in interacting with so many large files
in the final composite graph. Over the course of a film, aggressive
disk management has to occur to keep artists from filling the space

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

33:18 • B. Burley et al.

Fig. 15. Artistic manipulation of a rendered image. Physically based path tracing produces beautiful imagery, which is further enhanced and modified by

artists to meet art direction needs. Ultimately, physical accuracy is only an important starting point for meeting aesthetic requirements. Note how in going

from the raw render to the final frame, the artist has reduced the sunlit highlight from young Moana’s face, lowered the exposure of the foam on the water,

brought out additional detail beneath the water surface, and added haze to distant cliffs in the background, among other things.

Fig. 16. Compositing graph of just the character layer of Figure 15, show-

ing the dozens of render outputs the artist uses to assemble the final frame.

they have, because of this flexibility. See Figure 16 for a portion of
the compositing graph for the image shown in Figure 15.

There are limitations to this workflow. Just as digitally increas-
ing the brightness of a real photograph can reveal noise in un-
derexposed areas, pushing a render output too far in the reassem-
bly process can amplify noise or other artifacts. This is usually a
sign that the scene should be modified and re-rendered to generate
something closer to the desired result. When schedule pressure or
resource contention will not allow this, the artist is forced to mas-
sage the existing render outputs into something usable. Sometimes
the most expedient option is to just paint over the final image as-
sembly, and there may be times where doing so is the only option,
where the artist may have not broken out all of the layers that they
needed, or the render process may be misbehaving in some subtle
way that is spotted only in the final frames, and re-rendering is not
possible.

In the shot shown in Figure 15, the artist used many of the
techniques discussed in this section to achieve the desired art

direction. As was frequently true on Moana, the artist used sep-
arate path classifications in the composite to tune the water color
and reflectivity of the water surface. The water also reflected too
much light onto the characters at various points in the shot and
this reflected light was an unpleasant hue. While the artist was able
to use a transport modifier on Pua the pig, this did not work as well
for Moana or Chief Tui. As those characters moved away from the
water, they became too dark, which meant additional lights were
needed. The artist added additional exclusive lights that only il-
luminated the characters and then used a combination of mattes
and rotos to blend the various emission categories from the orig-
inal light and the exclusive lights. This enabled them to achieve a
seamless lighting transition as Moana is picked up out of the boat.
Finally, the background cliff was an expensive and noisy render,
which also had several art-direction notes. To save time, the artist
only rendered the first and last frames and projected a blend of
these two frames back onto the geometry in the composite. This
allowed the artist to make several paint fixes and adjustments us-
ing the mattes and rotos that would have been very difficult to
achieve in a single rendered image.

While all these manipulations may seem contrary to the notion
of a physically based renderer, our goal is not academic perfection,
but rather to make beautiful images of compelling worlds that feel
tangible.

6 DISCUSSION AND LIMITATIONS

6.1 Production Impact

Hyperion has made a significant impact on our filmmaking by
improving artist efficiency, raising the visual quality and consis-
tency, and allowing our film complexity to scale significantly be-
yond what we were previously able to achieve. However, there are
still challenges. Achieving art direction on an interior illuminated
entirely from outside can be difficult. Finding the right tradeoff be-
tween artistic controllability versus the visual richness provided by
strong multi-bounce indirect illumination can be challenging. Hy-
perion can render a massive amount of geometry, so of course our
films have taken that as a challenge to put more geometric com-
plexity on screen. Render times can be prohibitive under schedule
pressure, warranting additional non-rendering solutions to meet

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

The Design and Evolution of Disney’s Hyperion Renderer • 33:19

art direction. Certain forms of light transport, such as through
complex volumes, continue to be expensive.

There are also challenges outside the creation of final frames.
Hyperion is a powerful diagnostic tool, and gives many insights
that upstream departments can use. Technical animation artists
use renders to judge whether hair penetration is noticeable and
needs fixing. Animators can judge a performance in the context
of the final lighting to understand what to reduce or accentuate.
These use cases come at a cost, though. Compute resources are
at a premium (especially under deadline pressure), so launching
renders for diagnostic purposes poses a bandwidth challenge as
every department is rushing to finish its work. To combat this
bandwidth constraint, upstream departments often launch ren-
ders at lower samples-per-pixel. Lower-quality renders help alle-
viate compute resource contention, but has at times allowed arti-
facts to slip through that higher samples-per-pixel renders would
have shown. Therefore, trading off compute time against success
at catching problems becomes a balancing act throughout the last
few months of production.

Overall, having a powerful in-house renderer and a team of ded-
icated people evolving it to meet new challenges has been a huge
success. Having full control over Hyperion’s implementation al-
lows us to provide targeted, deeply integrated solutions, and gives
us agility to quickly respond to production problems as they arise.

6.2 Ray Batches: Interactivity versus Throughput, Batch
Starvation, and Path-Length Limitations

Hyperion achieves the highest throughput when it has full batches.
The end of an iteration always includes some number of partially
filled batches with accordingly degraded coherence. Reduced sized
batches are less of a problem for final quality renders, where a
few inefficient batches out of hundreds per iteration are barely no-
ticeable. However, for more immediate feedback in interactive ses-
sions, Hyperion renders the first iteration in progressive fractions,
starting with as few as 4 SPP and 1/256th of the pixels. In this initial
interactive progression, the batches are far from being filled.

Also, rendering with long paths can produce a string of many
nearly empty batches toward the end of an iteration when only
a few paths remain. In addition to reduced coherence, such small
batches can starve the system from having enough work to keep
all the cores busy. Even with full batches, the batch system has a
dip in core utilization as synchronization is required when the sys-
tem switches back and forth between traversal and shading phases.
For these reasons, our current architecture has diminished scaling
beyond 16 cores for typical scenes, and would not likely be able
to utilize the hundreds of cores anticipated in future computing
platforms.

To address these issues, we are investigating ways to overlap tra-
versal and shading, to use dynamic queues instead of fixed batches,
and/or to overlap iterations; recent work such as that of Lee
et al. (2017) provide encouraging validation for more queue-centric
architectures.

6.3 Coherent Traversal and Out-of-Core Efficiency

Out-of-core rendering is fundamentally a tradeoff between ray
intersection bandwidth and accessing data from disk; since
accessing data from disk is by definition slower than accessing

data in memory or in cache, efficiency has to be regained by in-
creasing the number of rays that can be processed per out-of-core
data access and decreasing the total number of out-of-core data
accesses required.

A simple approach to achieve maximum coherence within a
single thread would be to trace all of the rays in a batch against
one scene object at a time, and proceed through scene objects
front-to-back through the scene. This approach could be naively
parallelized by intersecting all of the rays against the current
scene object in parallel. However, this strategy has two major
shortcomings: first, the system has a synchronization point at
each scene object, and second, waiting for a scene object to load
blocks all threads.

Instead, in our current cone-based traversal system, we split tra-
versal into multiple queues at each top-level-hierarchy node, with
each thread processing a different queue. Since multiple threads
can operate on different queues for different scene objects at any
given time, object loading does not block all parallel threads. To
alleviate the situation where all the rays hit the same object at the
same time (which often occurs in the first batch where nothing has
been loaded yet), we also multi-thread traceable initialization steps
such as tessellation and displacement.

The problem with “spreading out” the traversal in this way
is that rays that miss an object must then be queued at the next
object in the traversal order, but that object may have already
been processed in another thread. Visiting each object multiple
times per batch impacts our out-of-core efficiency by increasing
the number of times traceables need to be reloaded. Additionally,
when reloading a traceable, we reprocess it from scratch (reading
the mesh description from disk, tessellating, displacing, and
building a BVH) making it difficult to amortize the cost even with
optimal coherence.

Our need for out-of-core geometry has been somewhat mit-
igated by increasing available memory, more extensive use of
instancing, and by optimizing the memory footprint of geometric
data structures. Nonetheless, we are experimenting with per-
object ray queues which defer processing rays for a scene object
to accumulate as many rays as possible and amortize the load cost,
and we are also investigating ways to pre-generate and cache our
ready-to-trace geometry to reduce the load cost.

6.4 Packet versus Single-Ray Traversal

For a packet of rays, our packet traversal is significantly faster than
traversing each ray individually due to the efficiency of our cone–
box intersection. Additionally, our queuing overhead is reduced
through the use of packets, requiring up to 32× fewer items in each
queue. However, when coherence degrades with small batches, the
packets’ cones become very wide and lose their culling power in
the top-level hierarchy. This is an occasional inefficiency we have
lived with, though we are considering disabling packets or perhaps
switching from packets to individual rays dynamically when we
detect that the packet is much larger than a given BVH node.

6.5 Managing Geometric Complexity

Even with the steady growth in computational and memory ca-
pacities, production demand for increased geometric complexity

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

33:20 • B. Burley et al.

continues unabated. This growth is only partly due to increasing
visual complexity. Artists also use more detail than strictly nec-
essary because there is often a productivity benefit for doing so.
Tight production schedules leave little or no time for optimizing
over-modeled assets or authoring low-detail versions. Artists also
often find it easier to use finely detailed geometry to control re-
flectance even when the details are not distinctly visible to the
camera; examples of this are flyaway cloth fibers, vellus hairs on
characters’ skin, grains of sand or ice on the ground, or dust par-
ticles on surfaces.

The sheer amount of geometry in our renders has forced
compromises. We would prefer to always tessellate surfaces to a
subpixel size (something we could routinely do with Reyes), but
usually choose not to in order to conserve memory. Though our
tessellation rate is usually quite fine, it can still occasionally be
coarse enough to cause visible pops when tessellation changes
with slow moving cameras. When necessary, these artifacts can
be addressed by fixing tessellation from a static representative
camera position. The lack of subpixel tessellation also requires
the use of shading normals to give the impression of the missing
subpixel detail, but shading normals are far from ideal, adding
significant cost by requiring displacement derivative evaluation
for every shading point (as opposed to simple displacement
evaluation during tessellation), neglecting shadowing between
fine surface features, and introducing artifacts when the shading
normal differs greatly from the geometric surface.

6.6 Attempts at Automatic Level-of-Detail

Level-of-detail (LOD) approaches can reduce memory usage, ren-
der time, noise, or all three. Given that artists seldom have time
to manage manual LOD solutions, automatic solutions are appeal-
ing. However, though we have made a couple of attempts at auto-
matic level-of-detail in Hyperion, we have yet to find an acceptable
approach.

Our initial LOD attempt in Hyperion, inspired by the R-LOD
work by Yoon et al. (2006), fit planes to internal BVH nodes ap-
proximating leaf geometry. We terminated our traversal when the
ray footprint was larger than the BVH node. Initial problems with
rays leaking through geometry led to the use of bounding slabs
instead of approximating planes. Artifacts were still a problem but
the biggest issue was that we observed neither speed nor memory
gains. The potential savings of shortening the depth of traversal
were offset by the additional traversal complexity.

Our next attempt was inspired by the Sparse Voxel Octree (SVO)
work of Laine and Karras (2010). Similar to our previous attempt,
we fit bounding slabs to the contents of octree nodes and also fit
directional normal distributions. With this system, we could ag-
gregate arbitrary geometry with memory reductions of 10–100×
for distant objects. Unfortunately, we found that aggregating some
surfaces produced objectionable artifacts and artists would need to
enable SVOs selectively with explicit LOD groups. Further inhibit-
ing adoption was the fact that SVOs were in general slower than
the non-LOD geometry and also added significant startup time to
the render process. While these issues may be surmountable, the
lack of robustness and need for artist management led us to aban-
don the approach.

One component of both LOD approaches that was deployed
into production was a simplified shading model. Our “shading
LOD” precomputed and stored parameters of our BSDF model
at triangle vertices. As before, when the ray footprint was larger
than the triangle being shaded, shading LOD would be used
instead of the full shader evaluation. While automatic and mostly
successful, it increased rather than reduced memory use given that
it only used the shading LOD for some rays. Worse, it sometimes
slowed the overall rendering iteration since BSDF-parameter
evaluation on start-up happens on every triangle vertex, even on
distant geometry where triangles are subpixel. There were also
visible artifacts that required disabling the shading LOD for some
surfaces. While this was not by itself an excessive burden, the
fact that it cast doubt on the soundness of the renderer’s output
was problematic. Any artifact in the image immediately drew the
question “Did you try disabling shading LOD?” Ultimately, the
benefit did not justify the cost and this feature was removed.

Perhaps the most significant problem caused by our lack of an
effective automatic LOD solution is noise due to subpixel geomet-
ric variance. A scene may render in a reasonable amount of time
and within the memory budget, but subpixel geometric detail may
still introduce excessive noise. And while memory and time can
be increased to a point, such noise often does not converge in any
reasonable amount of time.

6.7 Per-Face versus Single-Image Textures

We use the open source Ptex library for all of our texture storage,
caching, and filtering of both per-face and “single-image” textures
(where a single-image texture is just a traditional texture map
stored in a Ptex file containing only one face). Ptex was initially
developed primarily to address I/O bottlenecks due to the large
number of texture files previously required for highly detailed tex-
turing (Burley and Lacewell 2008). The per-face textures offered
by Ptex also enable significant workflow efficiency, avoiding the
need to manually assign UVs or decompose surfaces into multiple
texture files to manage texture resolution. For these reasons, per-
face textures form the bulk of our texture data, but single-image
textures are still used, usually for quickly covering an object with
a tiled projection when a unique texture has not been authored or
is not needed. Using the Ptex format for both allows unified cache
management and filtering, and though Hyperion’s sorted shading
is intended to provide maximal coherence for per-face texture
access, single-image textures also benefit.

Per-face and single-image textures differ in how they handle
large filter widths, for example, resulting from the wide footprint
of indirect diffuse rays. A single-image texture can be pre-filtered
down to a single texel making texture access cost negligible for suf-
ficiently wide filter footprints. In contrast, per-face Ptex textures
are pre-filtered only down to a single texel for each face. This lim-
its overblurring but increases the data access required for indirect
shading. Fortunately, the increased data access is mitigated by a
special constant-per-face texture which is stored as a contiguous
block at the front of the Ptex file and covers the entire mapped
mesh.

It’s worth pointing out that many, perhaps even most of our tex-
tures are masks used for blending between material layers. These

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

The Design and Evolution of Disney’s Hyperion Renderer • 33:21

masks often have large regions of constant color, typically black or
white. For these mask textures, per-face Ptex textures are particu-
larly advantageous as the filter is aware of constant faces, reading
these directly from the aforementioned constant-per-face texture
without any filter kernel overhead required.

6.8 Difficulty of Experimenting with Alternative
Sampling Techniques

Hyperion was designed to enable efficient unidirectional path trac-
ing from the camera. As a result, there are now many assumptions
in the code and architectural constraints that sometimes increase
complexity, reduce efficiency, and make experimenting with alter-
native sampling techniques difficult. In particular, our integration
code is currently highly decentralized and built into the shading
system.

As an example, instead of being implemented in a single place,
our light sampling code is implemented partially in individual
shaders, and partially in some shared infrastructure. Furthermore,
until recently we did not distinguish from rays created using BSDF
sampling and rays created using light sampling. As a result, we had
to have a relatively complex Russian-roulette system that worked
for all rays and we could not implement features, such as eye caus-
tics, that required separate rays for separate lights, each refracted
differently.

As another example, our photon-mapping system is spread
across several different areas, ranging from custom, dedicated
photon-tracing passes between iterations to photon-gathering
code implemented inside of our shaders. Ideally, we would
like to have a dedicated integrator to handle photon-mapping
calculations.

7 CONCLUSION

We have presented the architecture and development of Disney’s
Hyperion Renderer, along with a number of challenges encoun-
tered during the course of three feature films. We have also an-
alyzed and discussed various strengths and shortcomings in Hy-
perion’s architecture. Hyperion has led to significant improve-
ments in our filmmaking process and continues to evolve to meet
the studio’s needs for rendering new phenomena, increasing artist
efficiency, and ultimately creating films of the highest quality
possible.

ACKNOWLEDGMENTS

Many people besides the authors of this article contributed to the
development of Disney’s Hyperion Renderer. The original archi-
tecture for Hyperion was proposed by Brent Burley, and developed
by Christian Eisenacher, Gregory Nichols, and Andrew Selle. Sig-
nificant Hyperion development was also performed by Benedikt
Bitterli, Simon Kallweit, Gabor Liktor, Ulrich Muller, Jan Novák,
Ben Spencer, and Serge Sretschinsky.

We are grateful for the many in-depth discussions with Dis-
ney Research, Pixar Research, and the RenderMan development
team which influenced the development of Hyperion, especially
Per Christensen, Julian Fong, Christophe Hery, Wojciech Jarosz,
Marios Papas, Thomas Müller, Fabrice Rouselle, Rasmus Tamstorf,
Ryusuke Villemin, and Magnus Wrenninge.

We are thankful for leadership and management support
from Sean Jenkins, Darren Robinson, Rajesh Sharma, and Chuck
Tappan; project management from Andrew Fisher and Tami
Valdes; and quality engineering from Doug Lesan and Lisa Young.

More than anything, we would like to thank the many artists,
technical directors, and production supervisors who motivated
Hyperion, participated in its development, and contributed to its
success, especially Big Hero 6 leadership for taking a leap of faith.
We would also like to thank the pipeline software development
team, technology department, and studio leadership for support-
ing our efforts.

REFERENCES
John Amanatides. 1984. Ray tracing with cones. Computer Graphics (Proc. of SIG-

GRAPH) 18, 3 (Jan. 1984), 129–135. DOI:http://dx.doi.org/10.1145/964965.808589
Rasmus Barringer and Tomas Akenine-Möller. 2014. Dynamic ray stream traversal.

ACM Transactions on Graphics (Proc. of SIGGRAPH) 33, 4 (July 2014), 151:1–151:10.
Carsten Benthin, Sven Woop, Ingo Wald, and Attila T. Áfra. 2017. Improved two-level

BVHs using partial re-braiding. In Proc. of HPG. 7:1–7:8.
Brent Burley. 2012. Physically based shading at Disney. SIGGRAPH 2012 Course Notes:

Practical Physically-Based Shading in Film and Game Production.
Brent Burley. 2015. Extending Disney’s physically based BRDF with integrated sub-

surface scattering. SIGGRAPH 2015 Course Notes: Physically Based Shading in The-
ory and Practice.

Brent Burley and Dylan Lacewell. 2008. Ptex: Per-face texture mapping for produc-
tion rendering. Computer Graphics Forum (Proc. of Eurographics Symposium on
Rendering) 27, 4 (June 2008), 1155–1164.

Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck Tappan, and Brent Burley. 2016a. A
practical and controllable hair and fur model for production path tracing. Com-
puter Graphics Forum (Proc. of Eurographics) 35, 2 (May 2016), 275–283.

Matt Jen-Yuan Chiang, Peter Kutz, and Brent Burley. 2016b. Practical and controllable
subsurface scattering for production path tracing. In ACM SIGGRAPH 2016 Talks.
49:1–49:2.

Per H. Christensen. 2010. Point-based global illumination for movie production. SIG-
GRAPH 2010 Course Notes: Global Illumination Across Industries.

Robert L. Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes image ren-
dering architecture. Computer Graphics (Proc. of SIGGRAPH) 21, 4 (July 1987),
95–102.

Christopher DeCoro, Tim Weyrich, and Szymon Rusinkiewicz. 2010. Density-based
outlier rejection in Monte Carlo rendering. Computer Graphics Forum (Proc. Pacific
Graphics) 29, 7 (Sept. 2010).

Eugene d’Eon, Guillaume Francois, Martin Hill, Joe Letteri, and Jean-Marie Aubry.
2011. An energy-conserving hair reflectance model. In Proceedings of the 22nd
Eurographics Conference on Rendering (EGSR’11). Eurographics Association, 1181–
1187. DOI:http://dx.doi.org/10.1111/j.1467-8659.2011.01976.x

Kirill Dmitriev and Hans-Peter Seidel. 2004. Progressive path tracing with lightweight
local error estimation. In Proceedings of Vision, Modeling, and Visualization.

Christian Eisenacher, Gregory Nichols, Andrew Selle, and Brent Burley. 2013. Sorted
deferred shading for production path tracing. Computer Graphics Forum (Proc. of
Eurographics Symposium on Rendering) 32, 4 (June 2013), 125–132. DOI:http://dx.
doi.org/10.1111/cgf.12158

Manfred Ernst, Günther Greiner, and Marc Stamminger. 2006. Filter importance sam-
pling. In Proceedings of the Symposium on Interactive Ray Tracing. IEEE Computer
Society, 125–132.

Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production
volume rendering: SIGGRAPH 2017 course. In ACM SIGGRAPH 2017 Courses (SIG-
GRAPH’17). ACM, New York, Article 2, 79 pages. DOI:http://dx.doi.org/10.1145/
3084873.3084907

Valentin Fuetterling, Carsten Lojewski, Franz-Josef Pfreundt, and Achim Ebert. 2015.
Efficient ray tracing kernels for modern CPU architectures. Journal of Computer
Graphics Techniques 4, 4 (Dec. 2015), 91–111.

M. Galtier, S. Blanco, C. Caliot, C. Coustet, J. Dauchet, M. El Hafi, V. Eymet, R.
Fournier, J. Gautrais, A. Khuong, B. Piaud, and G. Terrée. 2013. Integral formula-
tion of null-collision Monte Carlo algorithms. Journal of Quantitative Spectroscopy
and Radiative Transfer 125 (April 2013), 57–68. DOI:http://dx.doi.org/10.1016/j.
jqsrt.2013.04.001

Jonathan Garcia, Sara Drakeley, Sean Palmer, Erin Ramos, David Hutchins, Ralf
Habel, and Alexey Stomakhin. 2016. Rigging the oceans of Disney’s “Moana.” In
SIGGRAPH ASIA 2016 Technical Briefs (SA’16). ACM, New York, Article 30, 4 pages.
DOI:http://dx.doi.org/10.1145/3005358.3005379

Iliyan Georgiev, Jaroslav Křivánek, Stefan Popov, and Philipp Slusallek. 2012. Impor-
tance caching for complex illumination. Computer Graphics Forum (Proc. of Euro-
graphics) 31, 3 (May 2012), 701–710.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

http://dx.doi.org/10.1145/964965.808589
http://dx.doi.org/10.1111/j.1467-8659.2011.01976.x
http://dx.doi.org/10.1111/cgf.12158
http://dx.doi.org/10.1145/3084873.3084907
http://dx.doi.org/10.1016/j.jqsrt.2013.04.001
http://dx.doi.org/10.1145/3005358.3005379

33:22 • B. Burley et al.

Paul S. Heckbert. 1990. Adaptive radiosity textures for bidirectional ray tracing. ACM
Transactions on Graphics (Proc. of SIGGRAPH) 24, 4 (Aug. 1990), 145–154.

Christophe Hery, Ryusuke Villemin, and Florian Hecht. 2016. Towards bidirectional
path tracing at pixar. SIGGRAPH 2016 Course Notes: Physically Based Shading in
Theory and Practice.

Illumination Engineering Society of North America. 1991. IES Standard File Format for
Electronic Transfer of Photometric Data and Related Information.

Henrik Wann Jensen. 1996. Global illumination using photon maps. In Proceedings of
Eurographics Workshop on Rendering Techniques. 21–30.

Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. 2001. A
practical model for subsurface light transport. In Prococeedings of SIGGRAPH’01
(Annual Conference Series). ACM, New York, 511–518.

Anton S. Kaplanyan and Carsten Dachsbacher. 2013. Path space regularization for
holistic and robust light transport. Computer Graphics Forum (Proc. of Eurograph-
ics) 32, 2 (2013), 63–72.

C. Kulla and M. Fajardo. 2012. Importance sampling techniques for path tracing
in participating media. Computer Graphics Forum (Proc. of Eurographics Sympo-
sium on Rendering) 31, 4 (June 2012), 1519–1528. DOI:http://dx.doi.org/10.1111/j.
1467-8659.2012.03148.x

Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and decomposi-
tion tracking for rendering heterogeneous volumes. ACM Transactions on Graph-
ics (Proceedings of SIGGRAPH 2017) 36, 4 (2017). DOI:http://dx.doi.org/10.1145/
3072959.3073665

Samuli Laine and Tero Karras. 2010. Efficient sparse voxel octrees. In Proceedings
of the Symposium on Interactive 3D Graphics and Games. ACM, New York, 55–
63.

Mark Lee, Brian Green, Feng Xie, and Eric Tabellion. 2017. Vectorized production path
tracing. In Proceedings of HPG. 10:1–10:11.

Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based optimization for
adaptive sampling and reconstruction. ACM Transactions on Graphics (Proc. of SIG-
GRAPH Asia) 31, 6 (Nov. 2012), Article 194, 9 pages. DOI:http://dx.doi.org/10.1145/
2366145.2366213

Jeffrey A. Mahovsky. 2005. Ray Tracing with Reduced-Precision Bounding Volume Hier-
archies. Ph.D. dissertation. The University of Calgary, Calgary, Alberta, Canada.

Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and
Pat Hanrahan. 2003. Light scattering from human hair fibers. ACM Tranactions on
Graphics 22, 3 (July 2003), 780–791. DOI:http://dx.doi.org/10.1145/882262.882345

Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, and Jan Novák. 2016.
Efficient rendering of heterogeneous polydisperse granular media. ACM Transac-
tions on Graphics (Proc. of SIGGRAPH Asia) 35, 6 (Nov. 2016), 168:1–168:14.

Koji Nakamaru and Yoshio Ohno. 2002. Ray tracing for curves primitive. Journal of
WSCG 10 (2002), 311–316.

Hubert Nguyen. 2007. Gpu Gems 3, Ch. 20 (1st ed.). Addison-Wesley Professional.
Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual ratio tracking for es-

timating attenuation in participating media. ACM Transactions on Graphics (Proc.
of SIGGRAPH Asia) 33, 6 (Nov. 2014), 179:1–179:11. DOI:http://dx.doi.org/10.1145/
2661229.2661292

Sean Palmer, Jonathan Garcia, Patrick Kelly, and Ralf Habel. 2017. The ocean and
water pipeline of Disney’s “Moana.” In ACM SIGGRAPH 2017 Talks.

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive render-
ing with non-local means filtering. ACM Transactions on Graphics (Proc. of
SIGGRAPH Asia) 31, 6 (Nov. 2012), 195:1–195:11. DOI:http://dx.doi.org/10.1145/
2366145.2366214

Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust denoising using
feature and color information. Computer Graphics Forum (Proc. of Pacific Graphics)
32, 7 (2013), 121–130. DOI:http://dx.doi.org/10.1111/cgf.12219

Andy Selle, Janet Berlin, and Brent Burley. 2011. SeExpr. Retrieved May 22, 2018 from
https://www.disneyanimation.com/technology/seexpr.html.

Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo techniques
for direct lighting calculations. ACM Transactions on Graphics 15, 1 (Jan. 1996),
1–36. DOI:http://dx.doi.org/10.1145/226150.226151

H. C. van de Hulst. 1974. The spherical albedo of a planet covered with a homogeneous
cloud layer. Astronomy and Astrophysics 35 (Oct. 1974), 209–214.

Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
dissertation. Stanford University, Stanford, CA.

Michael D. Vose. 1991. A linear algorithm for generating random numbers with a
given distribution. IEEE Transactions on Software Engineering 17, 9 (Sept. 1991),
972–975. DOI:http://dx.doi.org/10.1109/32.92917

Sven Woop, Carsten Benthin, Ingo Wald, Gregory S. Johnson, and Eric Tabellion. 2014.
Exploiting local orientation similarity for efficient ray traversal of hair and fur. In
Proceedings of HPG. 41–49.

Sung-Eui Yoon, Christian Lauterbach, and Dinesh Manocha. 2006. R-LODs: Fast LOD-
based ray tracing of massive models. Visual Computer 22, 9 (Sept. 2006), 772–784.
DOI:http://dx.doi.org/10.1007/s00371-006-0062-y

Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, and Tomoyuki Nishita.
2011. Toward optimal space partitioning for unbiased, adaptive free path sampling
of inhomogeneous participating media. Computer Graphics Forum 30, 7 (2011),
1911–1919. DOI:http://dx.doi.org/10.1111/j.1467-8659.2011.02049.x

Arno Zinke, Cem Yuksel, Andreas Weber, and John Keyser. 2008. Dual scattering ap-
proximation for fast multiple scattering in hair. ACM Transactions on Graphics 27,
3 (Aug. 2008), Article 32, 10 pages. DOI:http://dx.doi.org/10.1145/1360612.1360631

Received November 2017; accepted January 2018

ACM Transactions on Graphics, Vol. 37, No. 3, Article 33. Publication date: July 2018.

http://dx.doi.org/10.1111/j.1467-8659.2012.03148.x
http://dx.doi.org/10.1145/3072959.3073665
http://dx.doi.org/10.1145/2366145.2366213
http://dx.doi.org/10.1145/882262.882345
http://dx.doi.org/10.1145/2661229.2661292
http://dx.doi.org/10.1145/2366145.2366214
http://dx.doi.org/10.1111/cgf.12219
https://www.disneyanimation.com/technology/seexpr.html
http://dx.doi.org/10.1145/226150.226151
http://dx.doi.org/10.1109/32.92917
http://dx.doi.org/10.1007/s00371-006-0062-y
http://dx.doi.org/10.1111/j.1467-8659.2011.02049.x
http://dx.doi.org/10.1145/1360612.1360631

