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Fig. 1. Examples of different integrations of path guiding algorithms in production renderers, such as Blender’s
Cycles, Chaos’ Corona, and Disney Animation’s Hyperion. The images showcase different guiding specific use
cases, such as complex multi-bounce indirect illumination and caustics. First image: scene by Jesús Sandoval.
Third image: Moana 2 ©2024 Disney.

Over the last decade, path guiding algorithms found their way from the scientific realm into production
renderers. These algorithms enable the rendering of challenging lighting effects (e.g., complex indirect
illumination, caustics, volumetric multi-scattering, and occluded direct illumination from multiple lights),
which are crucial for generating high-fidelity images. The fact that these algorithms primarily focus on
optimizing local importance sampling decisions makes it possible to integrate them into a path tracer, the de
facto standard rendering algorithm used in production today. The theory behind these algorithms has been
presented and discussed on various occasions (e.g., in presentations or research papers), and their practical
applications in production have been explored in the previous course on: Path Guiding in Production.
Nevertheless, the implementation details or challenges associated with integrating them into a production
render are usually unknown or not publicly discussed.
This course aims to provide a deeper understanding of how specific guiding algorithms are integrated into
and utilized in various production renderers, including Blender’s Cycles, Chaos’s VRay and Corona, SideFX’s
Karma, and Disney Animation’s Hyperion. The first chapter (Chap. 1) provides deeper insights into the
nitty-gritty details that must be considered when integrating a path-guiding framework into a production
renderer, details that are usually unknown. In the second chapter (Chap. 2), Disney shares their experiences
and challenges when integrating path guiding into their wavefront production renderer Hyperion. The last
chapter (Chap. 3) presents Chaos’s recent advancements to their specialized guiding estimator for caustics.
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Integrating Path Guiding into a Production Render: The Nitty
Gritty Details
SEBASTIAN HERHOLZ, Intel Corporation, Germany

Fig. 1. Comparing equal sample count (128𝑠𝑝𝑝) renderings of the DarkInterior using standard path tracing
(left) with two different integrations of path guiding into Blender’s production renderer Cycles: center-left a
naïve integration and center-right our advanced integration that considers all nitty gritty details, presented
in this work. It is worth noting that both renderings utilize the same guiding framework and cache.

In recent years, local path guiding algorithms have transitioned from research to the production
rendering community. This transition enabled the simulation of challenging light transport effects,
such as complex indirect illumination, volumetric multi-scattering, and even caustics, using the
widely adopted path tracing rendering algorithm. With the introduction of Intel’s Open Path
Guiding Library (OpenPGL), it has become even easier than ever to integrate state-of-the-art,
production-ready path guiding algorithms not only in research but also in production rendering
systems.
While the details of most path guiding algorithms (e.g., guiding structures and training algorithms)
are explained in their corresponding research literature, the details about how to integrate them
efficiently into a production renderer are unknown or not discussed publicly. Especially the in-
teraction of path guiding with other rendering techniques, such as Russian Roulette, next-event
estimation, and roughening, can significantly influence the efficiency of path guiding. In the worst
case, these interactions can so severely harm the effectiveness of path guiding that it becomes
impractical in production.
In this section of the course, we provide some nitty-gritty details on how to integrate path

guiding into production renderers efficiently. The details were gathered during the integration of the
OpenPGL path guiding framework intomultiple production and research renderers such as Blender’s
Cycles, Chaos’s VRay, SideFX’s Karma, Disney Animation’s Hyperion (Chap. 2), Mitsuba, and PBRT.
Our most important insights include a modified RIS-based guided directional sampling (Sec. 3.3)
strategy, followed by an in-depth analysis of the interactions of path guiding with multiple other
rendering techniques such as Russian Roulette (Sec. 4), next-event estimation (Sec. 5), scattering
event types (Sec. 6), and roughening (Sec. 7), and how to combine them with path guiding without
harming its efficiency, or making it unpredictable by changing the final look of the rendering.
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1 INTRODUCTION

Accurate simulation of physically-based light transport is crucial when generating high-fidelity
images. Today, path tracing-based algorithms [Kajiya 1986; Veach 1998] have become the de facto
industry standard in production [Fascione et al. 2019, 2018]. Although multiple research works have
improved the efficiency of path tracing to render scenes with moderate light transport complexity,
complex effects like long indirect bounces, volumetric multiple scattering, or caustics are still
challenging. Rendering these effects either takes a long time to converge/finish, limiting their
accurate simulation to only a small set of shots in a production, or they have to be faked by
artists (e.g., using virtual light sources or gobos). For a decade now, path guiding has found its
way into production rendering [Vorba et al. 2019] and has been shown to significantly improve
performance when rendering these challenging effects. By including learned information about a
scene’s radiance distribution, these algorithms improve the sampling quality, enabling the rendering
of challenging effects (e.g., long complex indirect illumination, caustics, or multiple scattering in
volumes) more efficiently. The information about the scene’s light transport distribution is unknown
upfront and, therefore, has to be learned either online during rendering or in a preprocessing step.
Over recent years, much research has been done on the topic of path guiding by the rendering
research community. These works mainly focused on developing new guiding structures and
distributions [Dodik et al. 2022; Herholz et al. 2019; Müller et al. 2017; Ruppert et al. 2020; Vorba
et al. 2014], their training processes, or new target functions [Rath et al. 2020, 2022] to not only
reduce the variance but also improve the overall efficiency of the renderer. However, the path
guiding algorithims presented in these works are usually evaluated in isolation by integrating them
into scientific rendering frameworks, such as PBRT [Pharr et al. 2016] or Mitsuba [Jakob 2010],
and on scenes primarly containing complex light transport constellations, where standard path
tracing fails. In addition, standard rendering features such as next-event estimation or Russian
roulette are often disabled to focus more on the expressiveness of the used representations and the
improvements in sampling quality.
Unfortunately, production renderers are usually more complex than these scientific rendering

frameworks and make heavy use of a wide variety of additional rendering features/techniques
(e.g., next-event estimation, Russian roulette, roughening, light linking, etc.) to improve rendering
efficiency. All these methods can interfere with path guiding and influence its efficiency, making
the results shown in these research works not directly transferable to production renderers. When
aiming to integrate path guiding as an always-on solution in a production renderer, it is essential
that the sampling quality and efficiency only increase and do not decrease when compared to
disabling path guiding.

This is especially important for scenes that do not contain complex light transport setups and can
be rendered without path guiding. Unfortunately, details or experiences on how to integrate path
guiding into a production rendering system efficiently and robustly are usually not discussed in
path guiding literature. In this section of the course, we close this knowledge gap by presenting a set
of critical insights and some nitty-gritty details gathered from multiple integrations of path guiding
into production renderers. These insights include explorations of the interaction between path
guiding and other techniques, such as Russian roulette, next-event estimation, or labeling scattering
types, and how to combine them robustly, ensuring that the sampling quality and efficiency are never
worse than standard unguided path tracing. These integration details are typically not discussed in
research work. They are likely unknown to the majority of engineers and researchers who integrate
path guiding into their renderers for the first time. Nevertheless, these nitty-gritty details can make
a significant difference in the effectiveness and usability of path guiding in a production rendering
environment. Fig. 1 shows the difference between a straightforward integration of path guiding,
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as presented in multiple research papers, and an integration following our advice given in this
chapter.

2 LOCAL PATH GUIDING

The standard importance sampling techniques used in path tracing have access only to local
scene information, such as material/volume properties or light source setup, to build their sampling
distribution. Since global information about the indirect light distribution is unknown, the resulting
sampling distributions can only consider certain aspects of the integrand of the rendering equations
for surface-based [Kajiya 1986] and volumetric light transport [Chandrasekhar 1960; Kajiya and
Von Herzen 1984]. This limits their ability to sample some challenging light transport effects
efficiently, especially when the distribution of the full integrand (i.e., full product) significantly
diverges from the distribution of its sampled components (e.g., BSDF or phase function). Path
guiding approaches overcome this limitation by incorporating additional information about a
scene’s light transport into the sampling process. This additional information is usually learned
during rendering or in a preprocessing step. In principle, these algorithms can be classified into
two categories, global and local path guiding algorithms. Global path guiding approaches [Guo et al.
2018a; Simon et al. 2018; Zheng and Zwicker 2019] aim to learn the optimal sampling distribution
of a path all at once. These methods face the problem of finding an adequate representation and
training procedure to learn a high-dimensional distribution, which is challenging. To our knowledge,
these methods have not been adopted in production rendering yet. Local path guiding algorithms
take another approach: They interpret the sampling/construction process of a full path as a series
of nested estimators ⟨𝐿o⟩1:

⟨𝐿o (x, 𝜔o)⟩ = 𝐿e (x, 𝜔o) +
fs (x, 𝜔o, 𝜔i) · | cos(𝜃 i) | · ⟨𝐿i (x, 𝜔i)⟩

p(𝜔i | x, 𝜔o)
(1)

where the estimator for the incoming radiance, in the case of surface-based light transport, is
equal to the estimator of the outgoing radiance at the next path vertex x′: ⟨𝐿i (x, 𝜔i)⟩ = ⟨𝐿o (x′, 𝜔 ′o)⟩
with 𝜔 ′o = −𝜔i. These guiding approaches focus on optimizing the local sampling distribution
p(𝜔i | x, 𝜔o) at every path vertex to achieve a globally optimal path distribution. To improve the
local sampling distribution, these approaches learn an approximation/representation of the scene’s
light distribution. This distribution can be queried at each position in the scene for an approximation
of the local incoming radiance distribution (Sec. 2.1), which is then used to build advanced guided
importance sampling strategies (Sec. 3). By only relying on an approximation of the incoming
radiance distribution, the dimensionality of the guiding distribution used by local path guiding
approaches is significantly reduced compared to global path guiding approaches. The resulting
guiding representations are usually only 5-dimensional (i.e., 3D-spatial and 2D-directional), making
them easier to represent and learn. In the next section, we briefly introduce an open-source path
guiding framework (OpenPGL) that offers functionality to represent and learn guiding distributions
and to easily implement multiple local path guiding techniques in a rendering system (professional
or scientific). Later, in Section 3, we then show how the guiding distributions provided by such a
guiding framework are used to build guided directional importance sampling strategies that improve
the sampling quality of the local estimators (Eq. 1) leading to a significant variance reduction.

1In this work, we mainly focus our explanations on surface-based light transport and refer the reader to the works of
Herholz et al. [Herholz et al. 2019] and Xu et al. [Xu et al. 2024] for the volumetric case.
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2.1 OpenPGL: An Open-Source Production-Ready local Path Guiding
Framework

Intel’s Open Path Guiding Library (OpenPGL) [Herholz and Dittebrandt 2022] is an open-source
path guiding framework that is used by multiple production renderers (VRay, Blender, Karma,
Hyperion (Chap. 2)) as well as a few research rendering frameworks (PBRT [Pharr et al. 2016]2,
Mitsuba v0.6 [Jakob 2010]3). The library adopted multiple techniques developed by the research
community [Herholz et al. 2019; Müller et al. 2017; Rath et al. 2022; Ruppert et al. 2020; Vorba and
Křivánek 2016; Xu et al. 2024], and extended and optimized them to make them production-ready.
These extensions and optimizations focused on robustness, performance, quality improvements,
and ensuring determinism, a critical feature in production rendering. OpenPGL is not only useful
for production but also for the research community to develop new algorithms, which can easily be
adopted later in production. A recent example is the work by Xu et al. [Xu et al. 2024] on guiding
volume scattering probabilities, which was developed using OpenPGL and got immediately adopted
after publication (i.e., v0.8.0). The library provides a local path guiding framework for learning
and updating a 5D guiding structure incrementally (i.e., after every rendering iteration). At the
moment, the guiding structure uses a KD-tree to subdivide the 3D spatial domain of the scene and
supports 2D directional quad trees [Müller et al. 2017] and parallax-aware von Mises-Fisher mixture
models [Ruppert et al. 2020] to represent the directional guiding distributions. The structure stores
information about a scene’s surface-based and volumetric light transport. At each position x in the
scene, the structure can be queried to return a directional guiding distribution g that is proportional
to an approximation �̃�i of the local incoming radiance at x:

g (𝜔i | x) ∝ �̃�i (x, 𝜔i). (2)

This guiding distribution is used by the renderer to implement a guided directional sampling strategy
(see Sec. 3). In addition to the guiding distribution, OpenPGL offers the ability to learn and query
radiance caches for the incoming and outgoing or in-scattered radiance, quantities which either
can be used directly (i.e., for biased or viewport rendering) or for other guiding techniques such as
guided Russian Roulette (Sec. 4). In summary OpenPGL can be used to integrate the following path
guiding techniques: directional guiding on surfaces or inside volume, guided Russian Roulette or
volume scattering probability guiding (for primary and secondary rays), and to query the following
light transport quantities: incoming and outgoing radiance, irradiance (depending on the surface
normal), in-scattered radiance (for the Henyey-Greenstein phase functions) and an estimate for
the pixel value (Sec. 4.2). In the following Secs. 3–7, we will explain how a guiding framework that
supports similar features as OpenPGL can be robustly integrated into a production renderer. The
main goal of the integration is to ensure that path guiding does not only improve rendering in
challenging scenarios (e.g., caustics or complex indirect lighting) as usually presented in research
papers, but that it also works well in standard scenarios without decreasing the sampling quality
when compared to standard unguided path tracing.

3 GUIDED DIRECTIONAL SAMPLING

The optimal guided sampling distribution popt to reduce the variance of the outgoing radiance
estimator (Eq. 1) needs to be proportional to the integrand of the reflected radiance of the rendering

2Fork of PBRTv4 integrating OpenPGL: https://github.com/OpenPathGuidingLibrary/pbrt-v4
3Fork of Mitsuba 0.6 integrating OpenPGL: https://github.com/sherholz/mitsuba-path-guiding

https://github.com/OpenPathGuidingLibrary/pbrt-v4
https://github.com/sherholz/mitsuba-path-guiding
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equation:
popt (𝜔i | x, 𝜔o) ∝ fs (x, 𝜔o, 𝜔i) · | cos𝜃 i | · 𝐿i (x, 𝜔i). (3)

This optimal distribution would be proportional to the product of the BSDF, the cosine term, and
the incoming radiance. Theoretically speaking, if such a distribution were possible to achieve and if
it were consequently applied at every path vertex, the resulting estimator would have zero variance,
meaning a single sample would be enough to render a converged image. Since this would require a
perfect estimate of the incoming radiance, and we only have access to an approximation of the
incoming radiance, this is not achievable in practice.
Nevertheless, any guided directional sampling that results in a distribution approaching the optimal
one will significantly improve the sampling quality and, consequently, also reduce variance.
In the research community, multiple works proposed ways to approximate the optimal guided

sampling distribution as defined in Eq. 3. Some achieve this by reconstructing or re-weighting the
representation of directional guiding distribution, approximating the incoming radiance to represent
the product with the BSDF and the cosine term on-the-fly at every path vertex ([Bashford-Rogers
et al. 2012; Hey and Purgathofer 2002; Jensen 1995; Lafortune and Willems 1995]). Unfortunately,
these approaches require multiple evaluations of the BSDF, e.g., one for each quad tree or histogram
cell, photon, or photon footprint, or cosine lobe, which significantly increases the computational
costs, especially when using complex BSDFs, which is usually the case in production renderers.
Other works eliminate this cost overhead by utilizing closed-form features, such as analytical

solutions to calculate product distributions or convolutions, as provided by multiple parametric
mixture model-based representations ([Dodik et al. 2022; Herholz et al. 2016, 2019]). For each BSDF
model used in the scene, an intermediate representation is fitted that can be used to calculate the
product distribution efficiently on-the-fly at every path vertex.While these methods show promising
results in scientific rendering frameworks in scenes of medium complexity (e.g., number of different
BSDF models) and relatively simple BSDF models (i.e., one or two parameters), they are impractical
in production use cases. The reason for that is the required preprocessing phase in combination
with the sheer number of different BSDF models and their complexity (i.e., number of parameters),
leading to an enormous preprocessing time before rendering the first pixel. Nevertheless, in special
cases such as volume rendering, where the phase functions are simple, such closed-form product
approaches ([Herholz and Dittebrandt 2022; Herholz et al. 2019]) are usable, even in production.
Due to their limitations and impracticalities, these product-based guided sampling methods are not
widely adopted in production rendering. In practice, other guided sampling approaches that are
based on MIS (Sec. 3.2) or RIS (Sec. 3.3) are used to combine standard BSDF sampling with guided
sampling, based on the approximation of the incoming radiance distribution (Eq. 2).

3.1 General Advice
Before diving into the details of how to implement guided directional sampling, we would like
to provide some additional guidance on when to use it and when not to use it upfront. In some
research works, guided directional sampling is applied always regardless of the type or parameters
(e.g., roughness) of the BSDF at the current path vertex. This leads to insufficient sampling results
when the BSDFs are specular (i.e., Dirac-delta) or nearly specular (i.e., small roughness value),
since directional samples proposed by the guiding distribution usually lead to zero contributions
when evaluating these BSDFs. In practice, it is, therefore, advisable to only apply guiding when the
maximum roughness of a BSDF or the mean cosine of a phase function passes a given threshold.
In our experiments, we used a roughness threshold of 𝛼 > 0.05 and a mean cosine threshold of
𝑔 < 0.95 to activate guided sampling. It is worth noting that these thresholds can vary based on the
renderer and its definition of roughness.
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3.2 MIS-based Guided Sampling
Using single-sample multiple importance sampling (MIS) [Veach and Guibas 1995] is probably the
most commonly used approach to implement guided directional sampling ([Bashford-Rogers et al.
2012; Dodik et al. 2022; Herholz et al. 2019; Hey and Purgathofer 2002; Jensen 1995; Lafortune
and Willems 1995; Müller et al. 2017; Vorba et al. 2014]). Single-sample MIS combines BSDF-based
and guiding distribution-based sampling by either drawing a sample from the BSDF or from the
guiding distribution. The probability of either picking a sample from the BSDF (i.e., pfs

) or the
guiding distribution (i.e., g ) is defined by the BSDF selection weight 𝛼 , which results in the following
sampling PDF for a direction 𝜔i:

pguide (𝜔i | x, 𝜔o) = 𝛼 · pfs
(𝜔i | x, 𝜔o) + (1 − 𝛼) · g (𝜔i | x, 𝜔o), (4)

where pfs
is proportional to the BSDF and the cosine product:

pfs
(𝜔i | x, 𝜔o) ∝ fs (x, 𝜔o, 𝜔i) · | cos𝜃 i |. (5)

Since the guiding distribution g does not necessarily represent the optimal sampling distribution
(Eq. 3), alternating between sampling from the BSDF and the guiding distribution ensures that
the resulting estimator is unbiased, as long as 𝛼 is greater than zero. A fixed selection weight of
𝛼 = 0.5 is used in practice, resulting in a defensive sampling strategy [Hesterberg 1995] leading
to an upper bound for the variance of the resulting estimator of four times the lowest variance
of the two sampling strategies. Such an MIS-based combination of the two sampling strategies
compensates for many drawbacks of only sampling based on the BSDF and not the full product.
This is especially true when indirect illumination dominates the product distribution. It is worth
noting that the guiding distribution g (𝜔i | x, 𝜔o) does not necessarily need to be proportional to
an approximation of the full incoming radiance (Sec. 5). If supported by the guiding framework and
the used representation, a guiding distribution proportional to the product of the approximation of
the incoming radiance and parts of the integrand (e.g., cosine term or phase function) 4 can be used
to improve the guided sampling quality further. Using this MIS-based guided sampling strategy
leads to the following MIS estimator for the outgoing radiance:

⟨𝐿o (x, 𝜔o)⟩MIS = 𝐿e (x, 𝜔o)+
fs (x, 𝜔o, 𝜔i) · | cos(𝜃 i) |

pguide (𝜔i | x, 𝜔o)
·⟨𝐿i (x, 𝜔i)⟩. (6)

Importantly, this formulation is already a simplified version when using the balance heuristic for
calculating the MIS weights, which is only applicable if the PDFs of both sampling procedures can
be evaluated separately for a given direction. For some BSDFs (e.g., [Guo et al. 2018b]), this is not
the case; for example, when their sampling procedure relies on a random walk process and the
BSDF evolution and PDF are unknown, but the sampling weight, the division of the BSDF and
the PDF, is. In these cases, the original non-simplified version of the MIS estimator needs to be
used using an approximation p′fs

of the actual BSDF sampling PDF. This leads to the following MIS
estimator:

⟨𝐿o (x, 𝜔o)⟩MIS = 𝐿e (x, 𝜔o)+
p′fs
(𝜔i | x, 𝜔o)

𝛼 · p′fs
(𝜔i | x, 𝜔o) + (1 − 𝛼) · g (𝜔i | x, 𝜔o)︸                                                  ︷︷                                                  ︸

balance heuristic MIS weight

·
fs (x, 𝜔o, 𝜔i) · | cos(𝜃 i) |

pfs
(𝜔i | x, 𝜔o)︸                        ︷︷                        ︸

BSDF sample weight

·⟨𝐿i (x, 𝜔i)⟩

(7)

4These are features provided by OpenPGL if directional representations based on the von-Mises-Fisher mixtures are used.
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Note: This formulation is only needed for the samples generated via BSDF sampling. Samples that
are generated using the guiding distribution can still use the simplified version from Eq. 4 but need
to replace pfs

with p′fs
. If p′fs

is equal to pfs
, the BSDF PDFs in the numerator of the MIS weight and

in the denominator of the BSDF sample weight cancel out, resulting in a sample weight that uses
the MIS guiding PDF p

𝑔𝑢𝑖𝑑𝑒
from Eq. 4.

3.2.1 Selection Weight Optimization Although the MIS-based approach to implement guided
directional sampling is widely used, it does not guarantee that it will always improve the sampling
quality compared to standard BSDF-based importance sampling. In theworst case, it can significantly
decrease the sampling quality, leading to a significant variance increase, making path guiding less
efficient than standard path tracing.
This behavior is often not recognizable when rendering scenes with challenging light transport
constellations like the ones often used in path guiding research papers, where the variance of
standard path tracing is extremely high due to its inability to sample important light contributions
robustly. In scenes with medium light transport complexity the inefficiency of MIS-based guided
sampling can become more prominent. This is especially the case on surfaces with mainly glossy,
specular, or nearly specular BSDFs. In these cases, the directional samples proposed by the guiding
distribution are often outside the BSDF lobe, and the evaluation of the BSDF returns zero or a value
close to zero. These samples lead to early path terminations, often resulting in zero contributions
to the final estimate, which increases the variance of the estimator.
There have been multiple approaches to counter this problem. A simple solution is to use a

heuristic based on the roughness of the BSDF at the current path vertex as presented by Schüßler et
al. [Schüßler et al. 2022]. This heuristic intends to use more samples from the guiding distribution
when the material is rough (i.e., diffuse) and fewer when it is glossy or even none when it is almost
specular (i.e., Dirac-delta).
Another approach was presented by Müller [Müller 2019], who proposed fitting an optimal

selection weight that reduces the variance of the MIS estimator (Eq. 6). These optimized weights
are fitted for each cell of the spatial subdivision structure, while training the guiding structure.
Since each cell only stores one weight, this optimized weight represents a marginalization over
all BSDFs of the region covered by the cell. The resulting weight is, therefore, only the average
optimal weight, which might still be insufficient in cases where a cell contains BSDFs with highly
varying roughness values.

While both of these methods can improve the performance of MIS-based guided sampling
compared to a fixed selection weight (e.g., 𝛼 = 0.5), they do not guarantee to always be optimal or
never lead to a worse sampling distribution than standard path tracing using only BSDF sampling.
One of the main limitations of MIS-based guided sampling is that, as long as, the guiding distribution
only represents a component of the product and not the full product (Eq. 3), such as the incoming
radiance, the potential improvement of MIS is limited: 𝛼 · 𝐴 + (1 − 𝛼) · 𝐵 ≠ 𝐴 · 𝐵.

3.3 RIS-based Guided Sampling
Resampled Importance Sampling (RIS) [Talbot et al. 2005] is another way to build a guided sampling
strategy with a distribution close to the optimal product distribution Eq. 3. Unlike the previously
mentioned product approaches, RIS does not rebuild an entire product distribution on-the-fly or
require any preprocessing of representations of all BSDFs used in the scene. In the context of path
guiding, RIS was first introduced by Deng et al. [Deng et al. 2020] for guiding volumetric light
transport using a guiding distribution that does not support closed-form product sampling [Herholz
et al. 2019]. Our RIS approach differs from the one presented by Deng et al. [Deng et al. 2020]
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mainly in the target function Eq. 10 used to drive the resampling process and in a discussion about
how to combine RIS sampling with next-event estimation Sec. 3.3.1.
The first step of RIS generates a set of sample candidates {𝑐1, ..., 𝑐𝑁 }, which will be resampled

later based on some target function. To generate the set, we draw 𝑁fs samples from the BSDF and
𝑁g candidate samples from our guiding distribution. This process results in a set of 𝑁 = 𝑁fs + 𝑁g
resampling candidates, where each candidate 𝑐𝑖 corresponds to direction 𝜔i,𝑖 in which the path can
continue (i.e., 𝑐𝑖 = 𝜔i,𝑖 ). The PDF for generating a candidate is given by:

p(𝑐𝑖 ) =
1
𝑁
·
(
𝑁fs · pfs

(𝜔i,𝑖 | x, 𝜔o) + 𝑁g · g (𝜔i,𝑖 | x)
)
. (8)

In our experience, we already achieve sufficient and efficient sampling results by only using two
candidates, one from the BSDF (i.e., 𝑁fs = 1) and one from the guiding distribution (i.e., 𝑁g = 1).
This simplifies the candidate PDF to the following:

p(𝑐𝑖 ) = 0.5 · pfs
(𝜔i,𝑖 | x, 𝜔o) + 0.5 · g (𝜔i,𝑖 | x). (9)

It is worth noting that the guiding distribution used to sample candidates does not need to
be proportional to the incoming radiance (Eq. 2). For example, when using OpenPGL and the
parallax-aware von-Mises Fisher mixtures models (PAVMM) as directional distribution, we use
the product of the incoming radiance and the normal oriented cosine as sampling distribution, to
generate candidates. Due to the PAVMMs, such a product distribution can be sampled and evaluated
efficiently in closed form. A general rule of thumb is that the closer the sampling distribution of
the candidates is to the target distribution, the more efficient RIS will become.

The traditional RIS method presented by Talbot [Talbot et al. 2005] uses the product of the BSDF,
the cosine term, and the incoming radiance as the target function for the resampling process. This
is possible since Talbot uses an exact estimate of the incoming radiance by directly querying light
sources (e.g., an environment map). In path guiding, we only have access to an approximation �̃�i
of the incoming radiance and therefore, need to pursue a more conservative approach to avoid
insufficient or even biased sampling due to inaccuracies in the incoming radiance approximation.
To account for such inaccuracies, our target function combines our incoming radiance estimate g

�̃�i
with a constant (i.e., 1

4𝜋 ):

𝑡 (𝑐𝑖 ) = fs (x, 𝜔o, 𝜔i,𝑖 ) · | cos(𝜃 i,𝑖 ) | ·
(
𝛼 · 1

4𝜋 + (1 − 𝛼) · g �̃�i
(x, 𝜔i,𝑖 )︸                               ︷︷                               ︸

defensive 𝐿i estimate

)
. (10)

Since our incoming radiance estimate is based on a normalized distribution, the weighted combina-
tion with the constant of 1

4𝜋 leads to a defensive RIS sampling strategy. It has a similar effect as the
one described by Hesterberg [Hesterberg 1995] for MIS, where 𝛼 influences the probability of se-
lecting a BSDF sample during the resampling step. In our experiments, we found that using 𝛼 = 0.5
serves as a robust defensive sampling weight. It is worth noting that, based on the integration into
the renderer, the used approximation of the incoming radiance g

�̃�i
does not necessarily need to be

proportional to the complete incoming radiance but could also contain a fraction of it (Sec. 5).
Using our defensive target function (Eq. 10) and the sampling PDF of a candidate (Eq. 8), we

calculate a candidate’s resampling weight as follows:

𝑤 (𝑐𝑖 ) =
𝑡 (𝑐𝑖 )
p(𝑐𝑖 )

(11)
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In the next step, we resample our final candidate sample 𝑐𝑖 from the candidate set proportional to
the resampling weights, which results in the following RIS estimator:

⟨𝐿o (x, 𝜔o)⟩RIS = 𝐿e (x, 𝜔o)+
fs (x, 𝜔o, 𝜔i,𝑖 ) · | cos(𝜃 i,𝑖 ) |

𝑡 (𝑐𝑖 )
·
[

1
𝑁
·

𝑁∑︁
𝑖=1

𝑤 (𝑐𝑖 )
]
·⟨𝐿i (x, 𝜔i)⟩. (12)

This equation for the RIS estimator can be simplified by first converting the resampling weights to
resampling probabilities through normalization:

𝑃𝑟𝑠 (𝑐𝑖 ) =
𝑤 (𝑐𝑖 )

1
𝑁
·∑𝑁

𝑖=1𝑤 (𝑐𝑖 )
, (13)

which, after some reformulation, leads to the following RIS estimator:

⟨𝐿o (x, 𝜔o)⟩RIS = 𝐿e (x, 𝜔o)+
fs (x, 𝜔o, 𝜔i) · | cos(𝜃 i) |

p(𝑐𝑖 ) · 𝑃𝑟𝑠 (𝑐𝑖 )
·⟨𝐿i (x, 𝜔i)⟩. (14)

This notation of the RIS estimator is similar to the traditional Monte-Carlo estimator (Eq. 1 or Eq. 6),
where the integrand of the rendering equation is in the numerator and the PDF for the sample is
in the denominator. In RIS, the PDF for the final sample is the PDF of generating the candidate
sample 𝑐𝑖 multiplied by the probability of resampling the candidate from the candidate set. It is
worth noting that, due to the stochastic candidate generation process, this PDF is only valid for this
specific instance of a sample for the direction 𝜔i,𝑖 , namely the instance generated from exactly this
candidate set. Consequently, this PDF cannot be used directly for calculating MIS weights in the
context of next-event estimation (see Sec. 3.3.1). Fig. 2 demonstrates the improved sampling quality
of RIS-based against two versions of MIS-based guided sampling: one with fixed selection weights
(𝛼 = 0.5) and one with roughness-driven ones. To focus only on the differences in sampling quality,
we used the same pre-trained guiding cache (one for each scene) for each sampling method. As we
can see, MIS-based sampling with a fixed selection weight (𝛼 = 0.5) results in the lowest sampling
quality between the three strategies. Especially on the glossy metallic surfaces in theDarkInterior
scene (top), MIS can lead to insufficient sampling behavior since the samples proposed by the
incoming radiance-based guiding distribution generate invalid samples (i.e., samples with low
contributions or outside the BSDF lobe). The roughness-based MIS strategy (center) can improve
sampling quality by reducing the number of samples drawn from the guiding distribution, but it
does not achieve the same quality as the RIS-based strategy (right).

3.3.1 RIS and MIS for Next-Event Estimation As previously mentioned, the PDF for an RIS
sample is part of a stochastic process and is tied to a specific instance of a directional sample. This
means that this PDF can not be evaluated for a given direction afterwards: for example, to calculate
MIS weights for next-event estimation. It is possible to use an estimate of the PDF by repeating
the stochastic candidate generation process to estimate the selection probability 𝑃 (𝑐𝑖 ) for a given
direction 𝑐𝑖 = {𝜔i,𝑖 }. Unfortunately, such a process quickly becomes inefficient when the size of the
candidate set or the number of next-event estimation samples grows.
Our solution to this problem is relatively simple. It is based on the fact that, when calculating

the MIS weights, it is not absolutely necessary to use the actual PDF of a direction, as long as its
representative is the same when calculating the MIS weights for each technique. In our experiments,
we found that using the candidate generation PDF from Eq. 8 or Eq. 9 as a representative PDF for
the MIS weight calculations leads to sufficient weighting between the contributions of the different
estimators. It is worth noting that, while the resulting MIS weights perform well in practice, they
are not optimal, presenting an excellent opportunity for future research to improve them further.



Path Guiding in Production and Recent Advancements 13

Fig. 2. Comparing the quality of different guided sampling strategies using equal sample count (64spp)
rendering of the DarkInterior (top) and ShallowUnderWater scenes. Both scenes are rendered using
Blender’s Cycles rendering engine. The left shows MIS-based guided sampling (Sec. 3.2) using a fixed selection
weight of 𝛼 = 0.5, while the center adjusts the MIS selection weight based on the surface roughness. The
righ shows our RIS-based strategy as presented in Sec. 3.3.

4 PATH GUIDING AND RUSSIAN ROULETTE

Russian Roulette (RR) is an important and commonly used technique in rendering to improve
the computational efficiency of path tracing by terminating paths stochastically. Through this
termination, RR inevitably leads to an increase in variance (a.k.a. noise) when comparing equal
sample count renderings that do not use RR. An efficiency increase is achieved when the ratio of
saved compute time is higher than the ratio of the variance increase. Ideally, RR only terminates
paths with a low contribution to the final pixel estimate. Unfortunately, the contribution of the suffix
path is unknown upfront, and it is therefore common practice to rely on heuristics to estimate it.
The most widely used heuristic is the one introduced by Arvo and Kirk [Arvo and Kirk 1990], which
is based on the Monte-Carlo throughput weight (Sec. 4.1). Although this heuristic often works well
within a standard path tracer, it can lead to a significant increase in variance within a guided path
tracer when applied directly. This shortcoming of throughput weight-based RR was first pointed
out by Vorba et al. [Vorba et al. 2014] but is not well-known in the rendering community. Therefore,
it is standard practice in path guiding papers to either disable RR [Dodik et al. 2022; Müller et al.
2017; Ruppert et al. 2020], use a more defensive RR heuristic [Vorba et al. 2014], or use a more
advanced RR strategies [Herholz et al. 2019; Rath et al. 2022; Vorba and Křivánek 2016] (Sec. 4.2).
Unfortunately, all three approaches have their shortcomings. The first two can increase the average
path length, which, in the worst case, can make guided path tracing less efficient than standard
path tracing using throughput weight-based RR. The third approach, on the other hand, requires a
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more complex guiding framework since these methods rely on estimates of additional quantities
(e.g., pixel estimates, adjoints, or variance estimates).

In the following two sections, we first revisit the traditional throughput weight-based RR heuristic
as presented by Arvo and Kirk [Arvo and Kirk 1990], identify why guided path tracing leads to
insufficient termination behavior, and propose a simple workaround to fix this and restore the
initial throughput weight-based termination behavior (Sec. 4.1.1). In the second section (Sec. 4.2),
we discuss more advanced guided RR strategies and how these can be efficiently integrated into
a production renderer using the functionality provided by a path guiding framework such as
OpenPGL [Herholz and Dittebrandt 2022].

4.1 Traditional Throughput-based Russian Roulette
As mentioned before, Arvo and Kirk [Arvo and Kirk 1990] proposed an RR heuristic based on the
Monte-Carlo throughput weight t of a path x̄ to calculate the paths’ survival probability q at its
current end vertex x𝑘 5:

q (x𝑘 ) = t (x̄) =
[
𝑘−1∏
𝑖=1

fs (x𝑖 , 𝜔o,𝑖 , 𝜔i,𝑖 ) · | cos𝜃 i,𝑖 |
q (x𝑖 ) · p(𝜔i,𝑖 | x𝑖 , 𝜔o,𝑖 )

]
︸                                   ︷︷                                   ︸

prefix path x̄𝑘−1

·
fs (x𝑘 , 𝜔o,𝑘 , 𝜔i,𝑘 ) · | cos𝜃 i,𝑘 |

p(𝜔i,𝑘 | x𝑘 , 𝜔o,𝑘 )︸                             ︷︷                             ︸
path segment weight

. (15)

The throughput weight of that path is the product of all local Monte-Carlo weights at each path
vertex {x1, ..., x𝑘 } which, in case of surface-based rendering, are defined by the evaluation of the
rendering equation at each path vertex x𝑖 divided by the PDF for sampling the direction towards
the next path vertex. When RR is applied, the weights of the prefix path vertices {x1, ..., x𝑘−1} need
to include the division by the survival probability at each vertex x𝑖 where RR was applied.

In traditional path tracing, a new direction is sampled using a PDF that tries to be as proportional
as possible to the BSDF times cosine at the current path vertex (see Sec. 3 Eq. 5). As a result, we can
reinterpret the local Monte-Carlo weight as an estimate for the directional albedo:

f̄s (x, 𝜔o) =
∫

fs (x, 𝜔o, 𝜔i) · | cos𝜃 i | d𝜔i ≈
fs (x, 𝜔o, 𝜔i) · | cos𝜃 i |

pfs
(𝜔i | x, 𝜔o)

, (16)

which, due to the energy conservation of the BSDF, is defined to be less than or equal to one.
It is therefore valid to assume that the RR-corrected throughput weight of the prefix path

converges to around one, making the local RR decision at the current path vertex x𝑘 mainly
depends on the estimate of the local directional albedo. The overall path probability to generate
a path with the length 𝑘 is therefore the product of the local directional albedos at each path
vertex. As a result ,throughput weight-based RR leads to a heuristic that estimates the future path
contribution solely on the statistics of the prefix path, estimating a high future contribution if the
prefix path mainly interacted with bright materials and a low contribution if the prefix path mainly
interacted with darker materials.

When using path guiding, the directional sampling PDF is not proportional to the BSDF anymore,
making the local Monte-Carlo weight at the vertex not an estimate for the local directional albedo.
In fact, path guiding can lead to high PDF values towards important directions, which do not
necessarily result in high BSDF values. Since the guiding PDF is used in the denominator in Eq. 16
the value of the directional albedo is significantly underestimate leading to a higher chance to
terminate the path towards important directions. Through this early path termination, naively
applying traditional throughput weight-based RR, therefore, acts contrary to the initial goal of
5About the t parameter which in practice is usually set to 1 which leads to this simplified version.
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path guiding. Examples of this effect, where throughput-weight-based RR leads to a significant
variance increase when naively integrated into a guided path tracer is shown in the center in Fig. 3.
In the following, we introduce a simple fix that reestablishes the expected termination behavior of
throughput weight-based RR when using path guiding.

4.1.1 Russian Roulette Correction Factor Our solution to reestablish the intended behavior
of throughput weight-based RR when using path guiding introduces a correction factor 𝑐𝑖 that
corrects the difference between the guiding PDF pguide and the BSDF PDF pfs

at the i-th path vertex:

𝑐𝑖 =
pguide (𝜔i,𝑖 | x𝑖 , 𝜔o,𝑖 )

pfs
(𝜔i,𝑖 | x𝑖 , 𝜔o,𝑖 )

. (17)

Multiplying 𝑐𝑖 with the current path segment weight (Eq. 15) results in the estimator for the local
directional albedo (Eq. 16). The correction factor for a path, with the current end point at x𝑘 , is
defined by the product of the local correction factors from each previous path vertex x𝑖 :

𝑐 (x𝑘 ) =
𝑘∏
𝑖=1

𝑐𝑖 . (18)

With the help of our RR correction factor for the current path, we can calculate the fixed path
survival probability q ′ at the current endpoint point x𝑘 of the path:

q ′ (x𝑘 ) = 𝑐 (x𝑘 ) · t (x𝑘 ) . (19)
By using q ′ as the path’s survival probability, RR behaves as intended initially by Arvo and
Kirk [Arvo and Kirk 1990] when using a guided path tracer. It is worth noting that when simulating
long light paths (e.g., > 60 when simulating clouds), the paths’ correction factor can cause numerical
problems and instabilities when defined as float. A way to avoid this is to define 𝑐 (x𝑘 ) as a double
or by using an estimate of the local directional albedo directly instead of the throughput weight.
Examples of how our RR correction factor fixes the termination behavior of throughput weight-
based RR when using a guided path tracer is demonstrated on the right in Fig. 3.
In the CountryKitchen scene (top), path guiding without our correction only leads to minor,

almost not visible, improvements when compared to standard path tracing with RR. This is mainly
due to the early termination of important paths. For example, standard path tracing with RR yields
an average path length of 3.2, while guiding and RR without our correction reduces the average
path length to 3.0. With our correction path guiding, RR does not terminate important paths early,
which leads to an average path length of 3.1 and a significant quality improvement (i.e., noise
reduction). The render time increase compared to standard path tracing is +13% for path guiding
without and +14% with our correction6.

In the ShallowUnderWater scene (bottom), standard path tracing is not able to resolve the
caustics, both the directly visible ones on the floor and the ones reflected on the water surface. To
resolve these caustics, path guiding is required. Since we only apply RR at the second path vertex
(after the primary hit point), path guiding with RR with our correction can resolve the directly
visible caustic but fails to resolve the reflected ones at later path vertices due to early terminations
of important paths. With our RR correction, path guiding can robustly resolve both caustics, the
directly visible and the reflected ones. In this scene, the changes in average path length and render
times compared to standard path tracing with RR are minimal. The average path length changes
from 2.97 to 2.83 and 2.86, while the render times for both guiding methods only increase by +2.5%
6.
6Since we are using the same pre-trained guiding cache for all tests, the render times exclude the training times of the
guiding caches.
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Fig. 3. Equal sample count (64𝑠𝑝𝑝) renderings of the CountryKitchen and ShallowUnderWater scenes,
comparing standard path tracing without guiding and RR (left) against path tracing with path guiding and
RR: not using (center) and using (right) our correction factor (Eq. 19). All renderings are using the exact
same guiding cache, and RR is applied at the second path vertex (i.e., after the primary hit point). Both scenes
are rendered using our extended version of PBRT 2.

4.2 Guided Russian Roulette
More advanced RR techniques, such as adjoint-driven or efficiency-aware Russian Roulette and
splitting (ADRRS [Herholz et al. 2019; Vorba and Křivánek 2016] and EARS [Rath et al. 2022])
do not suffer from early path termination introduced by a change in the path tracers’ sampling
behavior. These methods are not based on heuristics but on mathematical derivations and concepts,
such as the zero-variance theory [Hoogenboom 2008], that consider the full Monte-Carlo process,
including the used path sampling procedures. In the following, we only discuss adjoint-driven RR
(ADRR), since ADRRS and EARS mainly differ in their splitting behavior and only lead to minimal
differences in their termination behavior. Additionally, the explanation of ADRR and its integration
into a path guiding framework is much simpler and intuitive.

4.2.1 Adjoint-driven Russian Roulette ADRRwas first introduced to the rendering community
by Vorba et al. [Vorba and Křivánek 2016] to counter the early path termination problem of
traditional throughput weight-based RRwhen using path guiding.While initially derived for surface-
based light transport, the technique was later extended to work for volumetric light transport by
Herholz et al. [Herholz et al. 2019]. According to ADRR, the optimal path survival probability qad
at x𝑘 is based on the ratio of the expected path contribution to the final pixel value 𝐼𝑝 :

qad (x̄𝑘 ) =
t (x̄𝑘−1) · E[⟨𝐿o (x𝑘 , 𝜔o,𝑘 )⟩]

qad (x𝑘−1) · 𝐼𝑝
. (20)
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The expected path contribution is estimated using the current path throughput weight t (x̄𝑘−1) until
the previous path vertex x𝑘−1 and an estimate of adjoint quantity which, in case of surface-based
light transport, is the outgoing radiance 𝐿o at x𝑘 towards the outgoing direction 𝜔o,𝑘 . Since our
definition of the throughput weight in Eq. 15 does not include the division by the survival probability
at x𝑘−1, we need to add the product with qad (x𝑘−1) in the denominator. When ADRR is applied in
the context of volume rendering the throughput weight needs to include the transmittance weight
from x𝑘−1 towards x𝑘 and the adjoint for the outgoing radiance needs to be replaced by the product
of the local scattering coefficient at x𝑘 and an estimate of the in-scattered radiance ([Herholz et al.
2019] Eq. 27). Both quantities, the estimate for the outgoing and in-scattered radiance, can be
learned during the training phase of the guiding structure and can be queried on-the-fly during
rendering. Based on the way RR and NEE are integrated into the renderer (i.e., if RR is performed
before or after NEE), the 𝐿o estimate should either contain the full direct illumination scattered at
𝑥 or the MIS weighted one (see Sec. 5).

The final pixel value 𝐼𝑝 can be estimated during rendering using the pixel samples from previous
rendering iterations/progressions. Since these estimates will be noisy, a denoiser such as Intel’s
OpenImageDenoise (OIDN) [Áfra 2019] can be used to improve the quality of the pixel estimates.
In our experiments, we found out that updating the pixel estimates after {20, ..., 2𝑁 } rendering
iteration/progression and denoising the results using OIDN leads to adequate pixel estimates.
Since OIDN can run on both CPU and GPU, supporting Intel, Nvidia, AMD, and Apple GPUs, the
overhead of updating the current pixel estimate buffer is negligible for CPU-based rendering when
a GPU is equipped in the system. An example series of denoised pixel estimates after multiple
update iterations is presented in Fig. 4. A comparison of traditional RR and adjoint-driven RR is

2spp2spp 4spp4spp

8spp8spp 16spp16spp

Fig. 4. Examples of the pixel estimate buffers at different rendering iterations: 2spp (top left), 4spp (top
right), 8spp (bottom left), 16spp (bottom right). Even at lower sample counts, like 2 or 4spp, the pixel
estimate buffers are already providing acceptable information to drive guided RR decisions (Eq. 20).

presented in Fig. 5. It is worth noting that the comparison uses the same guiding cache and random
number sequences that are bound to the pixel and the path indices. This results in a path generation
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process which only differs in path length due to RR, meaning that the difference (i.e., variance
increase) in the images (center and right) compared to using no RR (left) is solely due to the used
RR strategy. In both scenes, CountryKitchen and DeepUnderWater, guided RR (center), when
compared to using no RR (left), only leads to a minimal variance increase, resulting in a similar
noise behavior/pattern. On the other hand, throughput weight-based RR with our correction factor
(Sec. 4.1.1) significantly increases the variance, leading to visibly more noise (right).

Since the CountryKitchen scene is a closed environment, disabling RR leads to a high average
path length of 11.3. Applying RR significantly reduces the average path length to 4.3 for guided
RR and 3.1 for throughput weight-based RR. This shortening of the average path lengths has a
significant influence on render times, which is the reason why RR was introduced into rendering
in the first place. Guided RR reduces the render time by −61.6%, while leading to similar noise
behavior, while throughput weight-based RR reduces render times by −74.0%, while significantly
increasing noise.

Since the DeepUnderWater scene is a more open world setup, the differences in average path
lengths are not that drastic. Here, disabling RR leads to an average path length of 4.7 while using
guided RR leads to an average path length of 3.7 and 2.9 for throughput weight-based RR. The
changes in render times are therefore minimal, leading to a −22.2% decrease of guided RR and
−43.1% for throughput weight-based RR. It is worth noting that the effects on the rendering times
are directly correlated with the changes in average path length across all RR techniques.

Guided RRGuided RRNo RRNo RR RRRR

No RR Guided RR RR

Fig. 5. Comparing equal sample count (64spp) renderings of the CountryKitchen and DeepUnderWa-
terscenes using path guiding, without using RR (left), guided RR (center), and throughput weight-based RR
(right). The guided RR technique uses adjoint-driven RR (Sec. 4.2), while the throughput weight-based RR
uses our RR correction factor (Sec. 4.1.1). Both scenes are rendered using our extended version of PBRT 2.

General Advice: Most guided RR techniques require approximations of incoming or outgoing
directional quantities (e.g., radiance, variance, or second moment). At path vertices with glossy,
almost specular (i.e., Dirac-delta) materials, these approximations have to be precise to avoid making
an insufficient decision, which would negatively affect the efficiency of the renderer. Such precise
approximations are hard to achieve due to the expressiveness of the used model to represent (e.g.,
parametric mixtures, quad-trees, neural networks) or the spatial marginalization of the spatial
sub-division structure. We, therefore, found out that in cases where the BSDF closures are almost
specular, below a given roughness threshold (e.g., 𝛼 < 0.05), it is advisable not to use guided RR
and either fall back to a local directional albedo-based approach (Eq. 16) or to keep the survival
probability high (q (x̄𝑘 ) = 0.95), since surviving previous guided RR decisions already means that
the contribution of this glossy or specular suffix path is important.
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5 COMBINING PATH GUIDINGWITH DIRECT LIGHT NEXT-EVENT ESTIMA-
TION

Fig. 6. Visualizing the different approaches to include direct light information into the guiding distribution
and their resulting sampling behavior towards direct and indirect lighting. The scene setup utilizes an
environment illuminated by a uniform sky and a sun, a configuration where the sun’s contribution is typically
well-sampled using next-event estimation (NEE). The left (a) shows a guiding distribution that includes the
complete direct and indirect radiance information. Here, many samples are directed towards the sun, which
are later down-weighted by MIS, resulting in low or even insignificant contributions. The center (b) shows a
guiding distribution only containing indirect radiance information. Here, all guided samples are focused on
exploring indirect illumination and rely entirely on next-event estimation to sufficiently collect direct light
contributions. In cases where next-event estimation is not possible, for example, if NEE focuses all samples
towards the sun but an object blocks it, this leads to a non-optimal sampling distribution. The right (c) shows
a guiding distribution that includes the indirect and MIS-weighted direct radiance information. Here, the
guided samples explore the indirect radiance and the direct radiance that NEE does not optimally handle.

Combining multiple estimators via multiple importance sampling (MIS) [Veach and Guibas 1995]
is a commonly used technique to improve the efficiency of a path tracing-based renderer. The most
commonly used combination is one that combines directly sampling light sources, also known as
next-event estimation (NEE), with forward path tracing. In this setup the direct light contribution
from a light source at a path vertex x𝑖 is either evaluated by direct sampling a the contribution
from a light source or by continuing the path in a randomly sampled direction where the next
intersection 𝑥𝑖+1 is on a light source. To ensure unbiasedness (i.e., avoid double contributions) and
to reduce the variance of the resulting estimator, both contributions are then weighted via MIS
weights. These weights increase the contribution from the technique with lower variance (i.e.,
higher PDF) and decrease the contribution from the method with the higher variance (i.e., lower
PDF). Since a standard path tracer has no additional knowledge about the incoming radiance, it
samples new directions mainly based on the local BSDF, making this approach extremely efficient.
When using path guiding, we have access to additional knowledge about the incoming radiance
(both direct and indirect), and we face the challenge of utilizing this knowledge wisely to integrate
NEE efficiently. Unfortunately, there has been limited research on how to combine path guiding
with NEE to ensure the resulting estimator is most efficient and does not result in inferior sampling
quality compared to standard path tracing. In practice, there are three different approaches that are
used throughout different path guiding research papers. The first approach fully includes the direct
light contribution when building the guiding distribution:

g L̃i
(𝜔i | x) ∝ �̃�indirect

i (x, 𝜔i) + �̃�direct
i (x, 𝜔i). (21)

Using a guiding distribution that fully includes direct illumination neglects the existence of NEE
and the usage of MIS weights to potentially downweight the direct light contribution collected
via path guiding. In regions with strong direct illumination (i.e., when the direct is much stronger
than the indirect illumination), a majority of the paths are guided towards the light sources. If, at
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the same time, the contribution of these light sources can be sampled efficiently using next-event
estimation, the contribution of these guided paths is significantly downweighted via MIS. As a
result, the contributions of these paths to the final estimate are negligible, and the computations
used to evaluate them are more or less wasted. This can significantly decrease the efficiency of a
guided path tracer, which can make it even less efficient than standard path tracing. An example
of such a constellation is visualized in Fig. 6 on the left. It is worth noting at this point that many
research works on path guiding use this setting, but at the same time, they disable next-event
estimation during their evaluation to focus on the expressiveness and robustness of their models
([Dodik et al. 2022; Dong et al. 2023; Müller et al. 2017]). By doing so, they implicitly avoid this
problem.
The second approach completely neglects the direct light contribution, building a guiding

distribution that solely considers indirect light:

g L̃indirect
i
(𝜔i | x) ∝ �̃�indirect

i (x, 𝜔i). (22)

While this approach avoids the previous problem of over-exploring direct light contributions, which
are then downweighted via MIS, it does so by completely neglecting all direct light contributions
independent of their importance/contribution to the final estimate. As a result, the guided path tracer
relies solely on the defensive BSDF-based sampling strategy (see Sec. 3) to collect important direct
light contributions that are not sampled well by next-event estimation (e.g., if no advanced light
sampling strategy is used or at shadow boundaries). This leads to inefficient sampling, especially if
the direct light contribution outweighs the indirect light contribution, since most of the paths focus
on exploring the indirect light contribution instead of the more important direct light contribution.
An example of such constellation is visualized in Fig. 6 in the center.

A third approach is the heuristic proposed by Ruppert et al. [Ruppert et al. 2020] that includes
the MIS-weighted direct light as well as the indirect direct light contribution:

g L̃MIS
i
(𝜔i | x) ∝ �̃�indirect

i (x, 𝜔i) +𝑤𝑀𝐼𝑆 (x, 𝜔i) · �̃�direct
i (x, 𝜔i), (23)

where𝑤 is the MIS weight for sampling the direct light with forward path tracing. The intuition
behind this heuristic is that path guiding should only explore the residual direct light that is
contributed to the final estimate after MIS weighting. In cases where next-event estimation has a
high chance of sampling the direct light contribution, the MIS weight will downweight the direct
light component in the guiding distribution, while it will not downweight and, therefore, explore
more direct light contributions that are not sampled well via next-event estimation. While this
approach is based solely on intuition without any mathematical derivation or proof, we found that
it works well in practice and at least does not lead to worse sampling or variance behaviors than
standard unguided path tracing. A visualization of this approach is shown in Fig. 6 on the right.
Deriving a proper solution that combines next-event estimation with guided directional sampling
for direct illumination, based on a solid theoretical foundation, is an interesting and valuable task for
future research. Such an approach has the potential to further enhance the usability and efficiency of
path guidance in production. First attempts might explore applying some of the recently introduced
MIS-compensation techniques ([Ivo et al. 2019; Karlík et al. 2019]) to this problem.

6 SCATTERING EVENT TYPES AND LIGHT PATH EXPRESSIONS

In production, scattering event types (SETs) and light path expressions (LPEs) are essential features
of any rendering workflow. SETs describe the types of scattering events happening at every vertex
of a path and their order. For example, a scattering event at a vertex can happen at a surface (S) or
inside a volume (V), and the type of scattering event can be diffuse (D), glossy (G), or specular (S).
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This path information is used for different purposes. Artists use the scattering type of the previous
vertex to change the behavior of a material at the current path vertex (e.g., explicitly changing its
roughness, making it diffuse, or replacing the complete material to achieve specific effects). Another
important use case uses regular expressions on the list of scattering types of a path to separate
different light transport types or classes contributing to the image. These regular expressions are
called light path expressions (LPEs) and their contributions are usually stored in separate arbitrary
output variable (AOV) buffers that can be post-processed differently before merging back together
in the compositing stage.
The type of a scattering event at each vertex is usually defined by its BSDF or phase function.

Complex BSDF models are built through a set of different mixed or layered BSDF closures 𝐶𝑖 of
various types. In this case, the scattering type of the model is defined by the scattering type of
the closure used to sample the next path direction. Since the path guiding sampling process is
not directly connected to the BSDF and its individual closures (Sec. 3), the scattering type for a
sampled direction is undefined. As a result, we need to estimate the scattering type separately after
sampling a new direction using path guiding. When estimating the scattering type, the statistics
and characteristics of the SETs must match those generated with standard BSDF sampling. For
example, when a path vertex has a BSDF composed of a glossy and diffuse closure, the ratio of
glossy and diffuse scattering events needs to be the same for a given direction, independent of
whether BSDF-based or guided sampling is used. Any discrepancy between these ratios will lead to
inconsistency and bias, resulting in visually different rendering results when path guiding is turned
on or off. Such an inconsistency would not be tolerable and would make path guiding impractical
in production rendering.

In our previously mentioned example, the scattering event type at a path vertex and for a given
direction depends on the location of x and the selected BSDF or phase function closure used to
sample the new direction 𝜔i. The selection of these closures is a stochastic process, and therefore,
so is the resulting scattering event type for a sampled direction. To estimate the type of a scattering
event after guided sampling, we replicate the original process by first calculating the following
probability for each BSDF closure 𝐶𝑖 :

𝑃𝐶𝑖
=

𝛼𝑖 · pfs,Ci
(𝜔i | x, 𝜔o)∑

𝛼 𝑗 · pfs,Cj
(𝜔i | x, 𝜔o)

, (24)

which depends on the sampled direction 𝜔i and the current scattering event position x. This
probability defines the likelihood that the direction 𝜔i was generated by sampling the 𝑖-th closure.
Using these probabilities, we can estimate the scattering type for a sampled direction 𝜔i by first
randomly selecting a BSDF closure proportional to its probability and returning the scattering
type of the selected closure. If a renderer employs a different approach to identify the scattering
event type at a path vertex interaction, our presented approach must be adapted to match the
initial behavior of the renderer. Fig. 7 shows the effect of incorrectly labeled scattering event types
in a scene where the artist made extensive use of manipulating materials based on the previous
scattering event type. In both scenes, BarberShop and DarkInterior, the scattering event types of
previous path vertices are used to define the direct visibility of virtual light sources. As we can see,
incorrectly labeling scattering events (left) leads to a significant change in the scene’s look, when
compared to guiding with correct scattering event type labels (center) and the reference (right).
This change in look is caused by changes in the light visibilities and, therefore, contributions of the
scene’s virtual light sources to a shading point (i.e., path vertex).
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Fig. 7. Showing the effect of incorrect labeling of scattering event types (SET) for scattering events sampled
using path guiding. The left demonstrates how incorrect labeling of the SETs can change the look of a scene.
Our proposed SET estimation (Sec. 6) in the center leads to correct labeling of the SETs leading to a same look
as the reference not using path guiding (right). Both scenes, BarberShop and DarkInterior, are rendered
with equal sample counts (512spp) using Blender’s Cycles rendering engine.

7 IMPROVING PATH GUIDING ROBUSTNESS VIA PATH SPACE REGULARIZA-
TION

While local path guiding techniques can lead to significant efficiency improvements of a renderer,
especially when rendering complex light transport scenarios, this efficiency gain mainly depends
on the quality of the learned guiding structure (e.g., incident radiance field) (Sec. 2.1). The quality
of the guiding structure depends not only on the expressiveness of the model used to represent the
incident radiance field but also on the data used to train it. Online learning-based path guiding
frameworks, such as OpenPGL, learn their radiance field progressively from training data generated
during rendering. They, therefore, rely on standard unguided path tracing to initially discover
challenging light transport effects, which are then learned and further explored in upcoming
iterations. The ability to robustly learn complex light transport effects is, therefore, directly related
to the ability of standard path tracing to initially discover or sample these effects. Some highly
complex effects can be hard to discover by standard path tracing, making the occurrence of training
samples representing these effects extremely rare. As a result, it can even take several rendering
iterations for the effect to be discovered and learned. Examples of such effects are water caustics
generated by a perfect dielectric water surface (i.e., 𝛼 = 0) and a physically correct simulated sun
(i.e., radius of 0.5◦) or multi-bounce effects through multiple perfect dielectric surfaces. In the
worst case, an effect might not be discovered at all during the training phase of a frame, leading
to temporally inconsistent rendering results, where the effect is discovered in one frame but not
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in another. A way to counter this problem and assist the training process of the path guiding
framework is the use of path space regularization or roughening techniques [Georgiev et al. 2018;
Jendersie and Grosch 2019; Kaplanyan and Dachsbacher 2013; Weier et al. 2021]. The goal of these
methods is to simplify the light transport complexity by increasing the roughness of the materials
to increase the probability of sampling important light transport paths using standard path tracing.
In our experiments, we found that even a naïve/simplified version of the optimized path space

regularization (OPSR) method by Weier et al. [Weier et al. 2021] can significantly improve the
robustness of the forward learning approaches of path guiding frameworks when facing challenging
light transport effects/constellations. Our simplified version is based on the accumulated roughness
as described in Eq. 11 in their paper, considering only the roughness from the previous path vertex
(i.e., using 𝑘 = 1). Using this formula the updated roughness 𝛼 ′ at the current path vertex x𝑖 is
defined as follows:

𝛼 ‘(x𝑘 ) = 1 −
( (

1 − 𝛼 (x𝑘 )
)
·
(
1 − 𝛾 · 𝛼 ‘(x𝑘−1)

) )
, (25)

where 𝛼 defines the actual roughness at x𝑘 and 𝛼 ‘(x𝑘−1) the regularized roughness at the previous
path vertex x𝑘−1. Here, the parameter 𝛾 = [0, 1] defines the strength of the regularization, where
one means complete and zero means no regularization. In our experiments, we have found that a
value of 𝛾 = 0.01 often already leads to a significant improvement in the robustness of the guiding
structure’s training, while having only a minimal visual effect in the rendering. One crucial part of
OPSR is that the roughness from the previous path vertex is defined by the roughness of the closure
used to sample the direction towards the current path vertex and not the average, minimum, or
maximum roughness of the full BSDF at 𝑥𝑘−1. In cases where a BSDF closure is selected for sampling
proportional to its contribution, the roughening effect of OPSR on objects will only be minimal
when they are visible through specular closures (i.e., coatings), even if the BSDF at the previous
path vertex has a diffuse component. Similar to the scattering event types, when using path guiding,
the sampled roughness has to be estimated stochastically (Sec. 6). Fig. 8 shows examples of applying
our naïve version of OPSR on a scene with challenging and non-challenging light transport and
how it affects the quality/robustness of the trained guiding structure.
In the ShallowUnderWater scene (top), roughening significantly improves the convergence

of the directly visible and reflected caustics. These caustics only lose a little bit of their sharpness
(right) compared to when using a perfect dielectric water surface 7 (left).

The CountryKitchen scene (bottom )does not contain challenging caustic-like light transport.
Here, roughening has almost no visible effect on the final look of the scene, and the robustness of the
guiding caches remains similar, as they can already be trained robustly without using roughening
(left).

8 OTHER INTEGRATION CHALLENGES

The previous sections explained the most essential nitty-gritty details we encountered when
integrating path guiding using the OpenPGL framework in various production renderers. The
following section will briefly introduce some additional challenges that need to be considered when
integrating path guiding into a rendering system. The section finishes with a short list of advice
that we consider to be useful for a developer or researcher when integrating path guiding into their
rendering system.

7It is worth noting, at this point, that in reality, perfect specular (dielectric or conductor) surfaces do not exist.
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No RougheningNo Roughening Naive OSPRNaive OSPR

No Roughening Naive OSPR

Fig. 8. Comparing equal sample count (64spp) rendering of the ShallowUnderWater and CountryKitchen
scene using path guiding with and without our naïve implementation of OPSR-based roughening (𝛾 = 0.01). In
the ShallowUnderWater scene (top), even such a small roughening strength leads to a significant variance
reduction while causing only a minimal visual change by slightly blurring the directly visible and reflected
caustics. In the CountryKitchen scene, which does not contain complex specular light transport, this small
roughening strength does not affect either the visual appearance or the variance of the rendering. Both scenes
are rendered using our extended version of PBRT 2.

8.1 Training Data Generation
The effectiveness of a path guiding solution mainly depends on the quality and correctness of the
guiding structure, which, as mentioned in Sec. 2.1 and Sec. 5, usually represents an approximation
of the scene’s light distribution (e.g., for the incoming and/or outgoing radiance). In practice,
these guiding structures are learned from training data (i.e., radiance samples) generated by the
renderer using information from the random walks generated during the path tracing process. The
correctness of these radiance samples directly influences the correctness and quality of the learned
radiance field approximation. It is, therefore, essential to pay special attention when generating and
validating the training samples as well as the trained guiding structures. For example, when radiance
samples are generated via Monte-Carlo path tracing, the training of the radiance distribution needs
to consider that the training data are Monte-Carlo samples. Explicitly, this means that not only
samples with non-zero radiance values but also zero-valued samples need to be considered during
training to avoid structurally biased estimates 8. In our experience, debugging and ensuring the
correctness of the generated training data can take up to 70 − 80% of the time when integrating an
already existing path guiding framework, such as OpenPGL, into a renderer. It is worth noting at
this point that even inaccurate training data can often lead to guiding distributions that improve
rendering efficiency in complex light transport scenes (e.g., caustics or long indirect light transport),
such as the ones used in many research papers. The adverse effects on rendering efficiency often
become apparent only when testing the path guiding integration in more moderate day-to-day
scenarios. A detailed description of how to inspect and validate the training data and the learned
guiding structures can be found in Chap. 2 Sec. 4.2.

8The approximation will potentially be biased due to the limitation of the expressiveness of the used representation and
spatial and directional marginalization.
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8.2 Special Production Renderer Features
Other challenges when integrating path guiding into a production renderer include interactions
with path guiding and special rendering features used in production to make a scene renderable by
the given renderer within a given time and compute budget. These features often bend or break the
physical correctness of the rendering, making it challenging to ensure that enabling path guiding
leads to the same result as disabling it. When this is not the case, it is difficult to determine whether
the problem is caused by a bug in the integration of path guiding, the path guiding framework
itself, or the production rendering feature that breaks the physical correctness of the light transport
simulation. Examples of such features are radiance clamping, shadow path visibilities, or aggressive
roughening.

Radiance Clamping: Radiance clamping is a commonly used technique to reduce noise in the
rendered image caused by high-intensity outlier samples. If not clamped, these outlier samples
often require one or multiple orders of magnitude more samples than available in the given sample
budget to reach an acceptable noise level. Clamping introduces bias since it removes energy from
the image. The amount of introduced bias thereby depends on the renderer’s ability to sample the
challenging light transport, which causes the outlier sample. Since path guiding usually improves
the sampling quality of challenging light transport paths, the bias introduced by radiance clamping
also changes when path guiding is enabled. An example and discussion for the interaction of path
guiding and radiance clamping is presented in Chap. 2 Sec. 5.3.2 (Example: Throughput Clamping).

Shadow Path Visibility: Shadow path or light visibility is a commonly used feature in produc-
tion to enable or disable general shadow casting from an object or when evaluating shadow rays
for next-event estimation. It is often used to allow connections during light sampling through glass
windows (i.e., neglecting the refractions at the glass surface). When implementing these features, it
is challenging to calculate the MIS weights correctly. If not done correctly, and the MIS-weights do
not sum up to one, for example, due to inconsistencies in the directional sampling PDF, the look of
the rendering changes as soon as the directional sampling PDF changes (e.g., when path guiding
is used). It is, therefore, essential to validate the consistency and correctness of the MIS-weight
calculation in scenarios where the shadow path visibility feature is used before integrating path
guiding.

Aggressive Roughening: The positive effects of minimal or conservative roughening on path
guiding were already discussed in Sec. 7. When using smaller regularization factors that do not
significantly influence the overall look of the scene, the robustness and efficiency of path guiding
often improve. In production, it is not uncommon to use more aggressive regularization parameters
to simplify the scene’s light transport, allowing for the rendering of the scene within a given
time budget using standard path tracing. If such aggressive roughening approaches are used, path
guiding might not lead to significant efficiency improvements. A more detailed discussion about
aggressive roughening and path guiding, and why path guiding might still be beneficial in these
cases, is presented in Chap. 2 Sec. 5.3.2 (Example: Path Simplification).

8.3 General Integration Advice
Integrating path guiding into a complex rendering system can be challenging. When the inte-
gration is not working as expected or does not directly show an efficiency improvement, it is
often hard to judge if the problem is caused by bugs in the implementation of the path guiding
framework/algorithm, its integration into the renderer, or if path guiding, in general, is not helpful
in solving the given rendering challenges. To help developers during the integration process of
a path guiding framework into their rendering system, we came up with a collection of advice.
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A helpful attitude during integration is to focus on correctness and robustness first and consider
efficiency and completeness later.

Russian Roulette: As pointed out in Sec. 4, using Russian Roulette can harm the efficiency of
path guiding when the two techniques are not properly combined. It is, therefore, advisable to start
the integration of path guiding with Russian Roulette disabled and only enable it when the path
guiding integration is finished and works as expected.

Production Rendering Features: The challenges of combining path guiding with additional
production rendering features such as radiance clamping, light visibility, or aggressive roughening
were already mentioned in Sec. 8.2. Similar to Russian Roulette, it is advisable to start integrating
path guiding without the use of these advanced production rendering features and to enable and
combine them with path guiding one by one.

Equal Time vs. Equal Samples: When first testing the integration of a new rendering feature,
one has two options: Comparing equal-time or equal-sample-count renderings. Using equal-time
renderings directly reflects the efficiency gains or penalties when using path guiding. It is, therefore,
the ideal evaluation method for testing the efficiency of the final path guiding integration into the
rendering system. During the early stages of the integration process, on the other hand, focusing too
much on equal-time evaluations can be misleading. As pointed out in the previous Secs. 3–7, path
guiding can only unfold its full potential if all little nitty-gritty details and interactions with other
techniques (e.g., Russian Roulette or next-event estimation) are considered correctly. In cases where
not all of these aspects are already considered, equal-time comparisons may not show the expected
efficiency improvements. It is, therefore, advisable to start with equal sample count evaluations
first and include equal-time evaluations later if individual steps of the path guiding integration are
completed and their correct functionality has been evaluated.

Tracking Additional Statistics: When evaluating a path guiding integration, it is possible that
using path guiding can lead to a significant variance reduction in equal sample count renderings.
Still, it may result in lower efficiency when using equal-time comparisons. Sometimes, the reason
for the efficiency decrease is not obvious, for example, when the measured overhead of training
the guiding structure or guided sampling is minimal. In this case, it makes sense to examine other
per-path or path segment statistics, such as changes in the average path length or the ratio of valid
vs. invalid directional samples and how they impact a renderer’s efficiency.

Be Patient: Our last advice is to be patient and not give up too early. Implementing a path
guiding framework or integrating one into a renderer can be a tedious task. Initial integrations
often show promising results, e.g., when evaluating the integration on scenes with extremely
challenging light transport (e.g., caustics or complex indirect illumination). However, when tested
on more moderate scenes, the results may no longer seem as promising. As often, the devil lies in
the details when it comes to path guiding; even minor bugs or inaccuracies in the implementation
or integration can have significant effects on efficiency. Finding these bugs and inaccuracies is
tedious and can take a lot of time and patience, but trust us: It is worth it.

9 CONCLUSION AND FUTUREWORK

In this part of the course, we presented a collection of nitty-gritty details that are important
when integrating a path guiding framework into a production or research renderer. Most of our
findings were not previously documented or openly discussed, but they have a significant impact
on the effectiveness of path guiding. We hope that the provided integration details and insights



Path Guiding in Production and Recent Advancements 27

will further improve the adoption of path guiding in production rendering environments and
help researchers enhance the robustness and quality of their path guiding integration. While our
presented techniques demonstrate significant additional improvements when integrating path
guiding into a production environment, we believe that there is still room for further improvements.
We hope that further research and development will lead to a point where path guiding can be seen
as an always-on solution, enabling artists to build more scenes with complex light transport effects
without the need for hacks or ad hoc solutions to fake these effects. Ideally, this would enable
artists to focus on optimizing the appearance of the hero shots and final artistic nuances rather than
establishing or faking an overall physically plausible indirect lighting effect using virtual light rigs.
We view this work as a first step in this direction and look forward to what future developments in
path guiding for production rendering will bring.
An overview of open challenges of path guiding in production is presented in Chap. 2 Sec. 6.

Caustics, for instance, remain challenging effects to simulate. While classical local path guiding
techniques make it possible to resolve caustic effects using forward path tracing, they still may
need a large number of samples to be resolved sufficiently. For these cases, specialized bidirectional
guiding techniques that focus on solving caustics may be preferable in production. Such an approach
is presented in the third chapter of this course (Chap. 3).
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Path Guiding Surfaces and Volumes in Disney’s Hyperion
Renderer: A Case Study
LEA REICHARDT, Walt Disney Animation Studios, Canada
BRIAN GREEN, Walt Disney Animation Studios, USA
YINING KARL LI, Walt Disney Animation Studios, USA
MARCO MANZI, DisneyResearch|Studios, Switzerland
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Fig. 1. A production scene from Moana 2, rendered using path guiding in Disney’s Hyperion Renderer. From
left to right: reference baseline, 64 SPP without path guiding, 64 SPP with path guiding, and visualization of
the path guiding spatio-directional field at 256 SPP. © 2025 Disney

We present our approach to implementing a second-generation path guiding system in Disney’s
Hyperion Renderer, which draws upon many lessons learned from our earlier first-generation path
guiding system. We start by focusing on the technical challenges associated with implementing
path guiding in a wavefront style path tracer and present our novel solutions to these challenges.
We will then present some powerful visualization and debugging tools that we developed along the
way to both help us validate our implementation’s correctness and help us gain deeper insight into
how path guiding performs in a complex production setting. Deploying path guiding in a complex
production setting raises various interesting challenges that are not present in purely academic
settings; we will explore what we learned from solving many of these challenges. Finally, we will
look at some concrete production test results and discuss how these results inform our large scale
deployment of path guiding in production. By providing a comprehensive review of what it took
for us to achieve this deployment on a large scale in our production environment, we hope that we
can provide useful lessons and inspiration for anyone else looking to similarly deploy path guiding
in production, and also provide motivation for interesting future research directions.

1 INTRODUCTION

In these course notes, we present a case study of what it took to build Hyperion’s modern path
guiding system and what we have learned along the way. We first implemented a form of path
guiding in Disney’s Hyperion Renderer during the production of Disney’s Frozen 2; this initial
implementation was based on Practical Path Guiding (PPG) [Müller et al. 2017], with various
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improvements and extensions [Müller 2019] discovered along the way. This first version of path
guiding in Hyperion only saw limited production usage, but nonetheless provided many of the
lessons presented here; these lessons proved to be invaluable in shaping our modern path guiding
system.
Our modern path guiding system is built upon Intel’s Open Path Guiding Library (OpenPGL)

[Herholz and Dittebrandt 2022], which in addition to PPG implements other techniques such as
those proposed by Herholz et al. [Herholz et al. 2019] and Ruppert et al. [Ruppert et al. 2020].
However, nothing we present in these course notes is specific to OpenPGL; we believe everything
here is generally applicable and could be of interest to anyone looking to implement any modern
path guiding technique in a complex production renderer. Collectively, the work presented here
has allowed us to reach the point where we are now deploying our modern path guiding system on
a large scale on Disney Animation projects currently in production.
We will begin in Section 2 with a discussion of the fundamental challenges that Hyperion’s

wavefront architecture presents towards implementing an effective path guiding system; these
challenges directly motivated the Radiance Recorder data structure we describe in Section 3, which
underpins our entire modern path guiding system and our OpenPGL integration. In addition to
architectural challenges, debugging path tracing in a complex production setting is another major
challenge, for which we have developed new tools that we present in Section 4. We then present
how everything comes together in deploying path guiding in production in Section 5. Section 5
has four major subsections. Section 5.1 discusses how the Radiance Recorder is actually used in
practice, and Section 5.2 discusses how we solve the scheduling issues that arise from Section
2. Section 5.3 discusses the various practical challenges that we encountered in deploying path
guiding in a complex production environment; we found that these challenges do not diminish
the intrinsic value of path guiding, but do require considerable care to navigate. In Section 5.4, we
provide deeper dives into several specific interesting production results. Finally, in Section 6, we
give a preview of where we are taking our modern path guiding system next.

2 THE CHALLENGES OF PATH GUIDING IN A WAVEFRONT PRODUCTION
RENDERER

Disney’s Hyperion Renderer [Burley et al. 2018] uses a sorted deferred shading architecture
[Eisenacher et al. 2013], which fits under the broader definition of a wavefront style path tracing
architecture. Typically, path tracing is implemented in a depth-first manner, where each processor
core traces one complete path in a depth-first manner from the camera through the scene to either
a light source or the path’s termination before starting on another path. Conversely, wavefront path
tracing architectures execute path tracing in a breadth-first manner, where a large number of rays
are traced in parallel against the scene for a single bounce, results written to memory, then all of
the shading points processed in parallel for a single bounce, results written to memory, and repeat
until all paths are completed, with optional sorting and potentially other processing happening
between each step.
Wavefront, or breadth-first, path tracing architectures have gained traction in both CPU and

GPU-based production renderers for reasons primarily centered around extracting both better
memory access coherency and better execution coherency than depth-first architectures can achieve.
However, wavefront path tracing presents several major challenges to implementing more advanced
path tracing techniques, such as path guiding; in this section, we’ll briefly recap these challenges.
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2.1 Incompatibilities between Wavefront Architectures and Path Guiding
Wavefront architectures generally only fit well with purely feed-forward path tracing implementa-
tions. In this context, feed-forward means that at each path vertex, information can only flow to
future path vertices further down the path and can never flow backwards to earlier path vertices
because earlier path vertices are discarded as each path progresses. Feed-forward is typically a
requirement because wavefront path tracing requires keeping very large numbers of paths in flight
simultaneously in order to offer enough work to extract coherency from, and all of these paths
must have their path state stored in memory between sets of traversal and shading operations. All
of these path states can consume a large quantity of storage space, making a feed-forward approach
necessary in order to allow for freeing earlier path vertices from memory.

Modern path guiding techniques [Herholz and Dittebrandt 2022; Herholz et al. 2019; Müller 2019;
Müller et al. 2017; Rath et al. 2020; Ruppert et al. 2020] work by learning an approximation of the
scene’s radiance field, from which an approximation of the incident radiance distribution is queried
to improve importance sampling at each surface shading point or volumetric scattering location.
Commonly, this scene radiance field is learned on the fly from paths that the renderer constructs
and is continuously updated and refined throughout the course of the render. When a path is
completed, the renderer can calculate all radiance flowing back along the path from connected
light sources back to the camera, and can then feed the path guiding system an estimate of total
incident radiance at each vertex on the path. However, in a feed-forward wavefront path tracer, the
renderer does not have a complete path history at any given point in the rendering process, since
earlier path vertices are discarded as the path progresses. Without complete path history, there
actually is no way to correctly report a single incident radiance value per path vertex to a path
guiding system; we explain in detail why this is the case in Section 3.1 and provide a breakdown of
a common production example in Section 3.2.
Yalçıner and Akyüz [Yalçıner and Akyüz 2024] present an interesting implementation of path

guiding in a wavefront system using radiant exitance instead of incident radiance. Since radiant
exitance is a directionless quantity, using radiant exitance allows for guiding using a simpler sparse
voxel octree (SVO) [Crassin et al. 2009; Laine and Karras 2010] based spatial data structure for
storage which is populated by partitioning rays spatially and having rays collaboratively generate
an estimated radiance field per partition. However, this approach requires extensive modifications
to both the renderer’s architecture and to the guiding techniques being used, performs worse than
the methods from both Müller et al. [Müller et al. 2017] and Ruppert et al. [Ruppert et al. 2020]
in many cases, and has difficulty adapting to highly complex production scenes due to the SVO’s
fixed resolution. Furthermore, this approach still requires recording full path histories.

Unlike Yalçıner and Akyüz [Yalçıner and Akyüz 2024], we wanted to keep the same underlying
spatio-directional guiding data structure that most guiding approaches rely on and we did not
want to significantly rework the renderer’s ray scheduling architecture. But similar to their work,
we also found that the most straightforward path to solve the feed-forward problem is to simply
loosen the feed-forward requirement and store enough path history along with the current ray in
each path to allow for reconstructing a single incident radiance value per path vertex. However,
actually implementing this approach in practice is difficult because the underlying memory usage
requirements that drive the need for a feed-forward system still exist; determining what to store
ends up being a careful balancing act between maximizing the amount of information that is useful
to path guiding while still minimizing the total quantity of memory required. Solving this problem
is one of the key contributions of the work presented in these course notes.
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2.2 Hyperion Architecture Review
To provide the relevant context for the rest of these course notes, we first provide a high-level
summary of Hyperion’s architecture, which goes as follows:

• Rays are generated from the camera and placed into batches organized by primary cardinal
direction.
• In the past, non-active batches were potentially written to disk and offloaded from main

memory using mmap, but today this is no longer the case as all batches are kept in memory.
The most recently filled batch is always the next waiting batch.
• The next waiting full batch is activated. Rays within the batch are sorted by origin, time,
and direction, and then traversed through the scene’s BVH. Traversal is parallelized over
rays, with each thread tracing a single ray at a time.
• Hit points are sorted by scene object and mesh face index, and then shading is carried out

parallelized by scene object. Shaders spawn new secondary rays and light sample rays, both
of which are queued into batches.
• Each path segment or bounce inHyperion is called awave; a single batch can containmillions
of rays from multiple waves, with the specific number being an empirically determined
“sweet spot”.

All of the steps above are carried out in a series of iterations, with an iteration representing some
number of samples per pixel (SPP). Various data structure updates happen between iterations; we
discuss this with more detail in Section 5.2.1. Hyperion’s light transport is a purely feed-forward,
unidirectional path tracer with next-event estimation (NEE). This feed-forward approach means
that operations such as next event estimation must be implemented in such a way that does not
require spawned rays to immediately return an answer, since all rays are queued before being
traced.

Modern Hyperion has several subsystems where locality is intrinsically expected and the compu-
tational cost of deferring operations would outweigh the benefit; these subsystems are implemented
to bypass the wavefront architecture. Examples include subsurface scattering, volume rendering,
ambient occlusion in shaders, and a few others. Hyperion relies on path traced subsurface scattering
[Chiang et al. 2016], and for volumes, Hyperion uses a null-scattering theory based volumetric path
tracing approach [Huang et al. 2021; Kutz et al. 2017] that is optimized for efficiently calculating
high-order volumetric scattering. In both of these systems, potentially hundreds or thousands of
bounces can occur, but the actual shading calculations that have to happen per bounce to determine
the next scattering decision are essentially non-programmable by artists and are vastly simpler and
therefore faster to execute than standard surface shading, which in turn changes the execution
behavior enough to give a depth-first approach the advantage. However, when paths exit subsurface
scattering or volumes and encounter a surface again, paths are then placed back into the sorted
deferred batching system.

2.3 Previous Version of Path Guiding in Hyperion
Our first implementation of path guiding in Hyperion using PPG worked around the feed-forward
problem by simply storing a fixed number of path vertices with the current ray state. By default,
we set the number of stored path vertices to four, which was chosen to keep total memory usage
for storing ray states bounded. Hyperion’s ray states require upfront fixed memory allocations and
the system cannot dynamically allocate more memory per ray once paths are started; therefore, in
order to prevent non path guiding renders from needing to allocate memory for storing additional
path vertices per ray state, we created separate path guiding and non path guiding ray types
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and templatized the entire renderer on these different ray types, which introduced considerable
additional implementation complexity into the renderer.
Over time, we found that our first implementation of path guiding did not gain significant

traction in production due to several major reasons:
• Path guiding improved convergence speed in various difficult cases, sometimes by significant

amounts. But in other cases, such as scenes dominated by direct illumination, path guiding
also often increased total render time without providing significant improvements in noise
when compared with standard unidirectional path tracing at the same SPP count. As a result,
artists had a difficult time predicting whether or not path guiding would be worthwhile on a
given scene. A complicating factor is that path guiding’s performance is best characterized
as improvements in convergence rate, but our artists are used to thinking about renderer
performance in terms of raw speed to complete a render to a target SPP count but not
necessarily in terms of convergence rate.
• For particularly complex scenarios, limiting path guiding training to four path vertices

degraded results for deep paths with many bounces, making path guiding less attractive for
even the cases where it helps the most.
• While in academic renderers path guiding typically shows significant advantages in con-
vergence rate over unguided unidirectional path tracing, production renderers typically
contain various optimizations that narrow the gap between a guided and unguided result;
we discuss many of these in detail in Section 5.3. We found that understanding how these
production optimizations and factors would contribute to the overall "value" of enabling
path guiding was typically too much to ask of lighting artists already under time pressure
to deliver shots.
• Our initial path guiding implementation only supported guiding for surfaces and not for
volumes. As our films have become more and more reliant on extensive volumes in almost
every shot, ranging from complex effects to simple atmospherics, the lack of support for
guiding in volumes further decreased the usefulness of the system. Because volumetric
scattering typically requires many more bounces than surface-to-surface scattering, even
if we had implemented support for guiding in volumes in our initial implementation, the
problems caused by low limits on available path vertices for training would have been
further exacerbated.

As the complexity of our studio’s films continues to increase, we set forth to build a second-
generation path guiding system designed to apply the lessons we learned from the first version,
with the goal of arriving at a system that could see widespread deployment and provide significant
speedups for production. From the outset we understood that the ability to guide paths inside of
volumes would be crucial to a viable system, which led us to build on top of OpenPGL’s extensive
existing volume guiding capabilities. We knew that we needed to be able to train guiding data
structures using much deeper paths, but also wanted to simplify how path vertices are stored
and remove the need for multiple ray types in the renderer, which led directly to the creation of
the Radiance Recorder data structure described in Section 3. Even with the Radiance Recorder,
integrating OpenPGL into Hyperion’s existing architecture still required significant care; we
describe these steps in Sections 5.1 and 5.2. In order for our development team to provide better
recommendations to artists on when to use path guiding, we had to better understand ourselves
how guiding performs on a variety of production scenes — both simple and complex — and why
guiding performs the way it does; to this end, we developed better visualization and debugging
tools for path guiding, which we describe in Section 4. These debugging tools allowed us to then
gain many of the insights that we share in Sections 5.3 and 5.4.
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3 RECORDING RADIANCE IN AWAVEFRONT RENDERER

In this section, we use two specific examples to describe how incident radiance is computed
from Hyperion’s per-wave shader results. These examples demonstrate the central requirement
that incident radiance at a path vertex is only knowable once the entire path containing that path
vertex completes. We go on to show that this requirement is nearly trivial to satisfy in a depth-first
path tracer. However, under Hyperion’s wavefront architecture, a secondary structure is needed.
We call this structure the Radiance Recorder. The details of this structure are presented in the final
part of this section.

3.1 A Simple Example

x

e1

e2

w

Direct Illumination at (x, w)

Q1

Q2

P

Fig. 2. Simple direct lighting setup. The goal is to compute the incident radiance at path vertex P at location x
in direction w due to two virtual lights Q1 and Q2. e1 and e2 are the emission values at the light intersection
points in direction -w.

Figure 2 is a simple case. We have two virtual light sources Q1 and Q2. Common in production,
a virtual light source is a surface that emits light, but does not occlude light. They are also typically
sampleable via light sampling techniques when performing next event estimation (NEE). Let P
be the path vertex at x in direction w. A path vertex is fundamentally defined by its position and
direction, but it can store pretty much any arbitrary data that we want. We’ll adopt the notation
Pquantity to denote any quantity stored at path vertex P. See Table 1 for a symbol overview. For
purposes of this discussion, Ptp will denote the path throughput at P, Px the position, Pw the
direction, Pray denotes the ray at position Px in direction Pw, Pem the accumulated shader emission
values from light sources, and Prad the incident radiance at P. The task is to compute Prad and
record this single result as part of our training data.
In Hyperion, a light shader produces emission values. The emission values accumulated by a

path vertex relate to the incident radiance according to the formula

Pem = Prad × Ptp
Thus, to compute the incident radiance at P we take the incoming emission at P and divide by the
path throughput at P. The emission value is convenient in a wavefront architecture because it can
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Symbol Description
x a position
w a direction
P a path vertex (has a position x and direction w)
Px position of P
Pw direction of P
Pray ray at position Px in direction Pw
Ptp throughput at P
Pem accumulated light emission at P
Prad incident radiance at P

Table 1. Symbol overview. We generally use the notation Pquantity to denote any quantity stored at path
vertex P.

immediately be splatted to the framebuffer results. It is unfortunately required that we divide the
emission result by the path throughput to capture the incident radiance value needed for training
path guiding.
Breaking down the path in Figure 2 into waves:
• Wave 0: camera ray hits at Px
• Wave 1: Pray hits Q1 producing emission e1
• Wave 2: Pray hits Q2 producing emission e2
• Wave 3: Pray hits the environment (0 emission in this example)

For training, it is tempting to compute and record training values as
• Wave 0: camera ray hits at Px: record nothing
• Wave 1: Pray hits Q1 producing emission e1: record Prad = e1

Ptp
• Wave 2: Pray hits Q2 producing emission e2: record Prad = e2

Ptp
• Wave 3: Pray hits environment (0 emission in this example): record nothing

But this is wrong! For a single path vertex, we should record a single incident radiance value. With
the above algorithm we are producing two training samples at P, both of which are likely too small.
The correct, single training value to record for this path is

Prad =
e1 + e2
Ptp

This means we really can’t record any value for P until the path completes. Our algorithm needs to
look like:
• Wave 0: camera ray hits at Px: record nothing
• Wave 1: Pray hits Q1 producing emission e1: record nothing, but "remember" e1
• Wave 2: Pray hits Q2 producing emission e2: record nothing, but "remember" e2
• Wave 3: Pray hits environment (0 emission in this example): record Prad = e1+e2

Ptp

3.2 A More Complex Example
Figure 3 is a more complex example. It includes three virtual light sources (Q1, Q2, Q3), environment
light emission (e2, e4, e5, e8) and six path vertices (P0, P1, P2, P3, P4, P5)
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Fig. 3. A more complex lighting setup with direct and indirect illumination. We show a single path that
includes both NEE rays (orange) and path continuation rays (black). The goal is to compute the full incident
radiance at each path vertex P0 - P5.

Because we have six path vertices, we expect to record six values. It is also worth noting that
half of our path vertices correspond to NEE rays (shown in orange). This is a distinction we record,
as it can be useful for training purposes.
Applying our algorithm, which is visualized in Figure 4:

• Wave 0: camera ray hits at x1: shade : create P0 and P1
• Wave 1: P0ray hits at x2: shade : create P2 and P3

P1ray hits Q1 : remember e1 : continue P1
• Wave 2: P1ray hits environment: evaluates e2 : record P1rad = e1+e2

P1tp
P2ray hits at x3: shade : create P4 and P5
P3ray hits Q1 : remember e3 : continue P3

• Wave 3: P3ray hits environment: evaluate e4 : record P3rad = e3+e4
P3tp

P4ray hits environment: evaluate e5 : record P4rad = e5
P4tp

P5ray hits Q2 : remember e6 : continue P5
• Wave 4: P5ray hits Q3 : remember e7 : continue P5
• Wave 5: P5ray hits environment : evaluate e8 : record P5rad = e6+e7+e8

P5tp
record P2rad = e5+e6+e7+e8

P2tp
record P0rad = e3+e4+e5+e6+e7+e8

P0tp

A more intuitive way to think about it is that we must collect all the emission values that might
contribute to P#rad and then divide by P#tp. For some shorter path segments, such as that at P1,
only a small amount of storage is needed (for e1, and e2) that can be freed once that path segment
is complete. This is an interesting special case. For others, such as that at P0, we can only know that
we have collected all relevant emissions when the entire path completes. Neither these individual
emission components nor the path throughput for prior waves is typically stored in a wavefront
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renderer. In fact, the efficiency of a wavefront architecture is designed specifically around avoiding
the need to do this!

The improved algorithm requires a secondary data structure to accumulate emission results and
backpropagate radiance results as training data as paths complete. We call this data structure the
Radiance Recorder.
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Fig. 4. The algorithm from Section 3.1 and Figure 3 illustrated per wave in a wavefront context.
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3.3 Radiance Recording Compared to a Depth-First Renderer
Recording incident radiance in a depth-first renderer is seemingly trivial when compared to
a wavefront render. The secondary storage requirement needed by our improved algorithm is
completely satisfied by the ray trace stack.
Writing out each step in Figure 4 yields a natural depth-first implementation:

Camera ray hits x1
Create P0, 𝑃0𝑒𝑚 = 0

𝑃0𝑟𝑎𝑦 hits x2
Create P2, 𝑃2𝑒𝑚 = 0

𝑃2𝑟𝑎𝑦 hits x3
Create P4, 𝑃4𝑒𝑚 = 0

𝑃4𝑟𝑎𝑦 hits environment
𝑃4𝑒𝑚+= e5

Record P4rad = P4em/P4tp
𝑃2𝑒𝑚 += 𝑃4𝑒𝑚
Create P5, 𝑃5𝑒𝑚 = 0

𝑃5𝑟𝑎𝑦 hits Q2
𝑃5𝑒𝑚 += e6
𝑃5𝑟𝑎𝑦 continues to Q3

𝑃5𝑒𝑚 += e7
𝑃5𝑟𝑎𝑦 continues to the environment

𝑃5𝑒𝑚 += e8
Record P5rad = P5em/P5tp
𝑃2𝑒𝑚 += 𝑃5𝑒𝑚

Record P2rad = P2em/P2tp
𝑃0𝑒𝑚+ = 𝑃2𝑒𝑚
Create P3, 𝑃3𝑒𝑚 = 0

𝑃3𝑟𝑎𝑦 hits Q1
𝑃3𝑒𝑚 += e3
𝑃3𝑟𝑎𝑦 continues to environment

𝑃3𝑒𝑚 += e2
Record P3rad = P3em/P3tp
𝑃0𝑒𝑚+ = 𝑃3𝑒𝑚

Record P0rad = P0em/P0tp
Create P1, 𝑃1𝑒𝑚 = 0

𝑃1𝑟𝑎𝑦 hits Q1
𝑃1𝑒𝑚 += e1
𝑃1𝑟𝑎𝑦 continues and hits environment

𝑃1𝑒𝑚 += e2
Record P1rad = P1em/P1tp

Although its recursive nature makes the notation a bit awkward, we see that the essential values
(local emission value and local path throughput) are readily available whenever paths complete.
All we need to do is pass accumulated emission results back up the stack.
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PVIndex = block * BLOCK_SIZE + Index

Pop to allocate

Push when free
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Parent PVIndex, Accumulated Emission,
References, Other

Fig. 5. Block diagram of the Radiance Recorder data structure.

3.4 Radiance Recorder Data Structure
Per ray data in a wavefront renderer is expensive. This data is stored en-masse (millions of rays) as
batches that are sorted by various criteria prior to traversal and shading. There really isn’t a need,
nor the memory to carry around the ray history from previous waves within a path, unless you
want to do something fancy like path guiding! In fact, the underlying assumption of the wavefront
architecture is that anything we need to do can be done from local data on the current path ray
segment itself. To some extent, this makes a wavefront architecture a poor choice if path guiding is
high on your priority list of features.
Space for path vertex data is allocated in BLOCK_SIZE sized blocks (currently space for 4096

vertices). Each addressable location is computed as a unique 32-bit integer via the obvious block
* BLOCK_SIZE + index_within_the_block. This value is referred to as a PVIndex. It is stored in
our ray data, providing a mechanism to reference off-ray dynamic memory storage. PVIndices are
allocated on demand at scattering events from a queue of available PVIndices and pushed into the
queue when they are freed.

3.4.1 Vertex Data For any given path vertex, we store a variety of data members that are useful
for path guiding and debugging. The most important (and obvious) ones are position, direction, and
path throughput. Several members deserve more special explanation: parent PVIndex, reference
count, and accumulated emission.
By storing the parent PVIndex for any path vertex, we create a single-link list of path vertices

that define a path. Given any PVIndex, we are able to walk the entire path from it back to the
original camera ray.

When a path vertex is created, its reference count member is set to 1. When or if a child is created
from it as a parent, or the path vertex is continued, the reference count is increased. When an
interaction is marked as “done”, the reference count decreases. When a path vertex’s reference
count drops to zero, a process we call backpropagation is triggered and the PVIndex is freed.
When a path vertex is created, its accumulated emission member is set to 0. If it interacts with

an emissive geometry or an emissive volume, this emission is added to its emission. When a child
vertex’s reference count drops to 0, but before it is deleted, its emission is added to its parent.
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3.4.2 At Scattering Events At any scattering event (i.e. surface hit or volume interaction) the
current PVIndex is retrieved from the ray data and acted on in the following ways:
• Add any emission (i.e. we hit an emissive geometry or an emissive volume).
• Create new child path vertices for scattered rays and NEE rays.
• Continue the PVIndex if needed (e.g. ray continues after passing through a virtual light).
• Mark the interaction as done.

Illustrated as pseudo-code:

1: Results results← shade_scatter_event(rayData)
2: PVIndex pv← rayData.getPV()
3: if results.haveEmission() then
4: pv.addEmission(results.emission())
5: for all newRayData in results.scattered_or_nee_ray() do
6: // Increment the reference count on pv
7: // childPV reference count is 1
8: PVIndex childPV← pv.newPV(newRayData)
9: newRayData.setPV(childPV)
10: if results.continueRay() then
11: pv.continue() // Increment reference count on pv
12: pv.setDone() // Done with interaction, decrement pv’s reference count

3.4.3 Backpropagation When a path vertex reference count drops to 0, no further action will
take place on it. The path vertex will have no more direct emission added, it will not be continued,
and it will accumulate no further emission from its children. The following actions now take place:
• The incident radiance is computed from its accumulated emission and the sample is recorded
as training data for path guiding.
• Its emission is added to its parent’s emission.
• The parent’s reference count is reduced by 1.
• If the parent’s reference count drops to 0, repeat this process recursively.

We call this entire process backpropagation. Illustrated as pseudo-code:

1: function BackpropagateRecursive(pv)
2: Assert (pv.references == 0)
3: incidentRadiance← pv.emission / pv.throughput
4: RecordTrainingSample(pv, incidentRadiance)
5: parentPV← pv.parent()
6: if parentPV.notCamera() then
7: parentPV.addEmission(pv.emission)
8: Decrement(parentPV.references)
9: if parentPV.references == 0 then
10: BackpropagateRecursive(parentPV)
11: Delete(pv)
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3.4.4 Controlling Memory It is often impractical as well as unnecessary to record incident
radiance values for every path and/or at all scattering locations within a path. Accordingly, our
Radiance Recorder supports the ability to skip whole paths and/or skip vertices within a path.
By default, we set a target budget of N=4 vertices per path. On each iteration, we determine a

rate at which we will skip paths based on the average path length in the previous iteration and our
target budget. For example, if on the last iteration we had a total of 8 paths with 8 path vertices
each, we had a total of 64 path vertices. Our goal is to use the equivalent number of vertices based
on our target, in this case 8 * 4 = 32. So our skip rate for the next iteration will be 0.5. When a
camera ray is generated, we sample a random value and choose to skip the path based on this
random value and the rejection rate. A path is marked as skipped simply by using a special PVIndex
value of “SKIPPED”. A skipped PVIndex never allocates memory, nor ever has any children.

Heavy volumes have a tendency to produce a large number of very closely located scattering
events. To address this, we establish a minimum distance between path vertices. When attempting
to create a child vertex that is very close to the parent, we simply CONTINUE the parent path
vertex instead of allocating memory for a new path vertex.

4 DEBUGGING PATH GUIDING IN HYPERION

The need for additional debugging tools arose quickly during the process of integrating path guid-
ing into our production renderer, both to gain confidence in the correctness of our implementation
and to better understand the limitations of the approach used.
During our integration effort, we aimed to validate three aspects of path guiding separately:

(1) Is the sample data that is passed from the renderer to the path guiding training routines
correct?

(2) Is the model learning a reasonable model given the training data?
(3) Is sampling from the model done in such a way that variance in the final rendering is

reduced without introducing bias?
For the first point, we augmented our Radiance Recorder data structure (Section 3) with additional

debugging capabilities. And for the second and third points, we developed a renderer-agnostic
debugging tool, the Path Guiding Visualizer, which can visualize the learned spatio-directional
model, and can optionally show additional histograms of arbitrary data that can be gathered during
rendering (e.g., 2D histograms of the sampled incident data).

4.1 Radiance Recorder Debug Output
The wavefront-based architecture of Hyperion required us to develop a Radiance Recorder, i.e., a
subsystem to gather training data for path guiding, as described in Section 3. We realized that we
can instrument this subsystem to validate the gathered training data against the framebuffers. To
that end, we added the capability to the Radiance Recorder to splat certain training samples into
an auxiliary debug buffer. For instance, for every primary hit training sample, we can compute
the color that this path would splat to the beauty buffer. We do so by taking the sample’s incident
radiance, and multiplying it with the throughput between the camera and the current vertex and
local hit point’s material response. All these quantities are available to the Radiance Recorder. We
can then splat this quantity into a debug buffer, and compare the resulting image to the beauty
image. If they match, we know that we gathered the data at primary hit locations correctly. If path-
or vertex-skipping was used during training data aggregation, the debug image would appear to
be noisier than the beauty image, but both images should still converge towards the same image.
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This approach became our go-to tool to verify the correctness of the Radiance Recorder during
development, mainly due to its very low overhead and simplicity.

(a) Rendered image (b) Debug output (no skipping) (c) Debug output (skipping 90%)

Fig. 6. If implemented correctly, the Radiance Recorder’s debug output should perfectly match the rendered
beauty image if no path skipping is used. If path skipping is used, the debug image appears noisier, but should
still converge to the same solution as the beauty image. © 2025 Disney

The approach above can tell us if the total radiance gathered up to the primary hit location
is correct. However, it does not rule out the possibility that the wrong parts of the throughput
get factored out along later bounces. We can generalize the above approach to validate the data
gathered at the Nth bounce. To that end, at every Nth hit sample, we splat the product of the incident
radiance and the local material response, but don’t multiply it with the prefix throughput. If that
debug image matches a (non-beauty) output image from the renderer in which the throughput
between the camera and the Nth bounce is assumed to be 1, then we should again get a match or
images that converge towards the same solution in case of vertex- or path-skipping. This approach
was more complex to implement and maintain, so it was used only intermittently. Since much
of the gathering code and logic between primary and secondary hit point samples is shared, it’s
unlikely to have a failure at the Nth bounce which does not show up in the first bounce already.

4.2 Path Guiding Visualizer
Our most powerful debugging tool is a visualizer that loads a navigable representation of the
spatio-directional field that was created by the path guiding method. We specifically tailored the
version of our tool shown in this course to OpenPGL. In principle, however, adjusting the tool to
other path guiding methods is straightforward as long as the method learns a spatial subdivision
tree that can be used to create a cheap, navigable representation of the scene. Given the serialized
output from OpenPGL, our goal was to design a tool that can load the field from disk, deserialize
it, and create a navigable 3D representation of the scene, where the user can examine the learned
model and inspect guiding statistics per 3D location in the scene.

4.2.1 Navigable Representation of the Scene We designed our tools to be independent of
the renderer that created the path guiding field, hence we completely avoid the need to parse the
scene descriptions, as their format might differ significantly between different renderers. Therefore,
our representation of the scene can be created from the compact guiding field data alone, which
typically is just a few megabytes in size. The field stores a spatial subdivision tree where leaf nodes
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correspond to voxels in the scene that are associated with a learned distribution of the incident
radiance. For each leaf node, OpenPGL stores additional information such as the extent of the
spatial region represented by the node, as well as the bounding box of all training samples that
fall within a node’s region. Leaf nodes are visualized as voxels. The voxels’ extent corresponds
to the bounding box of the training samples used to train that leaf node’s model since the last
spatial subdivision was triggered. If we were to use the full extent of the leaf node’s region instead,
the voxels would include a lot of empty space, making interpretation of the scene representation
difficult. For ease of navigation in the scene, we augmented OpenPGL to store the mean reflected
radiance towards the camera as a statistic per leaf node, which we can use to assign a meaningful
color to each drawn voxel in the visualizer (Figure 7). We store additional information about the
camera into a separate metadata file. With that, we can correctly set the initial camera view when
loading the scene representation, such that it matches the view in the rendered image. The user
can then navigate freely through the scene using simple controls.

Spatial Subdivision at 32 SPP Spatial Subdivision at 256 SPP

Fig. 7. A rendering from Frozen 2 and the corresponding voxel representation of the spatial subdivision at 32
and 256 samples per pixel. © 2025 Disney

4.2.2 Representing Volumes Exploring volumes with this voxel representation poses a bit of a
challenge, as voxels will fill out the full extent of the volume. A useful tool seemed to give the user
the option to “slice” the scene at a specific distance from the camera, or from a specific location in
space to examine the volume at certain depths (Figure 8). In the future we’d like to augment our
viewer by the option to make voxels corresponding to volumetric content transparent. However,
this would require the renderer to pass a transmittance estimate per voxel to the field, which our
production renders do not provide right now.

4.3 Visualizing the Directional Models
In our voxelized scene representation, the user can select a voxel by clicking on it, and the corre-
sponding directional distribution at the center of the voxel will be shown. Our tool directly uses the
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Fig. 8. A rendering of a heterogeneous cloud (top left) and its corresponding voxel based visualization showing
the full volume (top right), and two different cuts through the voxel representation of the volume (bottom). ©
2025 Disney

OpenPGL API to query the loaded spatio-directional field, and can evaluate the learned directional
model on the fly for any location in space. Given a selected location, we initialize the distribution for
that location and then query the density over an azimuth-altitude grid covering the whole sphere of
directions. We achieve interactive framerates, since the (expensive) initialization of the directional
distribution with OpenPGL has to happen only once per location, and the directional queries over
the azimuth-altitude grid can be parallelized trivially. Once the azimuth-altitude datapoints have
been acquired, we visualize the density in two ways: As a 2D cylindrical projection of the sphere
of directions in a separate window, and on a sphere projection in the main scene representation
window located at the selected location in the scene (Figure 9). We found that both views are useful:
The former makes the entire sphere of directions visible at one glance, while the latter helps the
user associate peaks in the distribution with corresponding scene features.

4.3.1 Visualizing the Parallax Compensation The mixture-based model from OpenPGL uses
parallax compensation as described in Ruppert et al. [Ruppert et al. 2020]. This is a powerful
feature in OpenPGL that allows in many cases to represent the radiance across larger regions of
space more accurately. However, it requires passing distances to the emitter as part of the training
data, which in a production renderer can be rather difficult to provide in a consistent fashion (e.g.
what distance should we use for direct incident light arriving from multiple virtual lights located
at different distances along the ray?). Hence, visualizing the parallax compensation’s effect on
the distribution is important so that we can detect issues that might arise from it. To check the
effect of parallax compensation on the learned distributions, we implemented additional sliders to
specify positional offsets in XYZ direction with respect to the center of the selected voxel, such
that movement within a voxel becomes possible. The offset gets applied on the central location of
the voxel before querying the distributions. In combination with the spherical distribution view,
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Cylindrical representation Spherical representation

Fig. 9. Showcase of directional distribution visualizations on a frame from Moana 2. 2D cylindrical projection
of a directional distribution (bottom left). Projection of the same distribution onto a sphere, placed inside the
voxel representation of the scene (bottom right). © 2025 Disney

one can then perturb the position of the distribution and assess if the compensation performs as
expected (Figure 10). To make changes due to parallax compensation visible for small voxels, we
made the limits of the offset 4x larger than the extent of the voxel. By going beyond the limits of
the voxel and observing if the parallax compensation is able to still track features in the scene, it
becomes easier to judge if it indeed has the expected effect.

4.3.2 Visualizing the Stochastic Lookup OpenPGL performs a stochastic lookup across neigh-
bors during inference. We found that ignoring this effect in the visualized distribution can lead to
misleading conclusions. We thus add the option to "simulate" such stochastic lookups in our viewer.
To that end, while selecting a location, the viewer continuously queries the model with different
stochastic inputs (this means querying a fixed location from a randomly selected neighboring
model). The visualized distribution is updated in real time showing the integral across all these
distributions that were looked up so far. After a few seconds, the shown distribution corresponds
to the expected distribution that the renderer will query from a specific location in space.



Path Guiding in Production and Recent Advancements 47

Fig. 10. Offsetting the querying location within or around a voxel to examine the effect of the parallax
compensation on a closeup of a scene from Moana 2. Notice how the frontal peak of the distribution moves
as we change the offset to the query position, such that it always points towards the light source in the front.
© 2025 Disney

4.4 Visualizing Additional Statistics
Sometimes it is hard to assess whether a model really makes sense, e.g. whether the brightness
of a light source as seen in the model is correct. During development, we stored low resolution
2D images per spatial tree leaf node that store the incident radiance training data. This would not
identify issues with the training data itself but could be used to assess whether the learned model
matches the training data. We later extended this simple approach to store additional data; by far
the most useful additional data was a 2D histogram of the empirical distribution of samples. We
could check if the actual empirical distribution of samples would match the learned distribution.
We used this as a sanity check to see if our integration of the learned model into the directional
sampling routines would be correct (see item 3 in Section 4). Differences would still be visible
due to the empirical distribution being marginalized over the region of space corresponding to a
leaf node of the spatial SD-tree, whereas the shown models are for a specific location in space. So
in practice the empirical distributions were blurrier than the theoretical ones. Despite this, this
visualization proved to be useful in identifying defects in the sampling routines.

Voxel representation Training data Learned model Sampled distr.

Fig. 11. Example of the recorded incident radiance in a Cornell Box (2nd from left), the corresponding learned
model (2nd from right) and a 2D histogram of guiding samples drawn from this model in the renderer (far
right).
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5 LESSONS FROM PATH GUIDING IN PRODUCTION

In this section, we share our experience of bringing a research project into a production environ-
ment. We highlight aspects of production scenes and workflows that pose challenges that may be
overlooked in a research environment.
Sections 5.1 and 5.2 discuss two technical details of our second-generation path guiding imple-

mentation that were influenced by insights we gained during testing on shots in our production
environment. The technical details discussed are specific to Hyperion and may not apply directly
to other renderers. Nevertheless, we believe these insights help provide intuition into how the
integration of a new method can affect a production renderer in many ways. In Section 5.3, we give
an overview of the practical realities of production rendering, and we discuss why experiments
conducted in research environments might not directly translate to production environments. And
lastly, Section 5.4 gives insights into a selection of production shots and discusses path guiding’s
performance on those shots.

5.1 Vertex Splatting Depth
In Section 3.4.4, we discuss that the Radiance Recorder data structure supports stochastic skipping
of vertices or entire paths when recording incident radiance. This section presents our motivation
for this functionality in more detail on a practical use case from production. In fact, we initially did
not plan on adding vertex and path skipping functionality, and the need for it only became clear
during production testing on exceptionally volume-heavy shots on Moana 2.

5.1.1 Motivation As discussed in Section 3.4.4, the purpose of the vertex and path skipping
functionality is memory control. As paths can become very long on complex production shots,
recording radiance estimates for every single path vertex becomes impractical. In production shots
with dense volumes, paths can have hundreds of bounces. As the radiance estimates are only
splatted into the path guiding radiance cache at the end of a render iteration, peak memory usage
would be excessive in such cases.

In the following, we motivate our choice of stochastic vertex and path skipping, as opposed to a
naive vertex restriction method.

Fig. 12. Illustrative example of restricting number of recorded radiance estimates to the first N=4 vertices of
a path. The first 4 vertices can have decent spatial coverage in simple scenes.
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5.1.2 Naive Approach Naively, we can restrict the number of recorded radiance estimates per
path, by storing only the radiance estimates at the first N vertices. This way, the memory cost per
path is fixed and controllable. Moreover, vertices earlier on a path are likely to cover important
areas of the scene, while later vertices tend to have lower importance. In a simple scene with mainly
surface interactions, this strategy may work very well. Figure 12 illustrates this thought: With only
the first N=4 vertices, we achieve decent spatial coverage of the entire scene.

Unfortunately, this strategy fails for scenes with very dense volumes. During production testing
on Moana 2, we encountered extremely volume-heavy shots, with volumes of very high density,
much denser than what we had seen in past shows and in research scenes. Figure 13 shows such a
shot from Moana 2.

Fig. 13. A volume-heavy shot from Moana 2. © 2025 Disney

If we record only the radiance estimates at the first N vertices, the spatial distribution of the
recorded data can be insufficient and only “scratch the surface” of a dense volume, as illustrated in
Figure 14. The spatial subdivision of the resulting SD-tree data structure will look imbalanced as a
result. And more importantly, the training data available deeper inside the volume is too sparse to
learn meaningful guiding distributions.

5.1.3 Improving Spatial Distribution of Training Data in Dense Volumes The vertex and
path skipping feature discussed in Section 3.4.4 solves the problem of imbalanced spatial distribution
of training data in dense volumes. If we stochastically skip vertices or entire paths when recording
radiance estimates, we can record data at later bounces while maintaining a soft vertex budget.
Let’s take a closer look at how our two skipping strategies, vertex skipping and path skipping,

improve the above example with a very dense volume. In Figure 15, we illustrate how stochastic
vertex skipping can improve the spatial distribution of training data inside the volume, while
maintaining a soft vertex budget of 4 vertices per path, using a suitable skipping probability learned
in an earlier iteration.
The following mathematical example further motivates the use of the skipping functionality:

With the naive approach from Section 5.1.2, and a vertex budget of 4, the maximum path depth at
which we record data is always 4. In contrast, with stochastic vertex skipping with a soft vertex
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budget of 4, and skipping probability 0.25, for example, the maximum path depth at which we
record data is 16 on average. This ignores early path termination for simplicity.

Similar to vertex skipping, we can skip entire paths stochastically, and in turn allow more vertices
per path to be splatted. This way, we can also reach deeper into the volume, while maintaining a
soft average vertex budget per path. Figure 16 illustrates this concept.

Fig. 14. Illustration of paths scattering through a dense volume. When recording the radiance estimate only
at the first N=4 vertices, the resulting SD-tree data structure can have imbalanced spatial coverage of data
inside the volume.

Fig. 15. Illustration of stochastic vertex skipping with a soft vertex budget of 4 vertices per path. Skipping
vertices earlier on the path leads to better spatial distribution of data inside the volume.

Fig. 16. Illustration of stochastic path skipping with a soft vertex budget of 4 vertices per path. We allow
selected paths to record more vertices than the soft budget, allowing recording data deeper into the volume.
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5.2 Render Iteration Schedule
In this section, we show two implementation details that relate to the render iteration schedule.
The adoption of a path guiding iteration schedule in Hyperion demanded implementation changes
to prevent undesirable impacts on render time and memory usage. We discuss two examples and
discuss how those implementation changes affected rendering performance.

5.2.1 Render Iteration Schedule Recap We first recap how we define a render iteration in
Hyperion. For more details, see Burley et al. [Burley et al. 2018]. Hyperion divides a render into
render iterations. In each iteration, we render a subset of the total SPP. The first iteration is small
(usually either 16 SPP for batch renders or 4 SPP for interactive renders), and the iteration sizes
double each round until reaching a max iteration size. The following could be a typical sequence of
iteration sizes in a Hyperion render:

16 16 32 64 128 256 256 ... 256

In between iterations, no rays are in flight, which makes it a good time to do computations
without concurrency issues. Hyperion does tasks, such as:

• Checkpointing
• BVH Updates
• Adaptive Sampler Updates
• Cache Points Updates
• Photon Mapping Updates
• Path Guiding Updates

For path guiding, we in theory desire small iterations, especially in the beginning. We want to
update the guiding distributions frequently, so that subsequent iterations can benefit from better
distributions as quickly as possible. Therefore, our path guiding iteration schedule differs from our
regular iteration schedule shown earlier. These are the key differences:
• We start with a smaller iteration size than in the regular iteration scheme.
• We repeatedly use the smallest iteration size in the beginning, before transitioning to
geometrically increasing increments.
• The maximum iteration size is smaller than in the regular iteration scheme.

Depending on the renderer architecture and features, the path guiding iteration schedule can
strongly influence the performance and result of path guided renders. The following considerations
specific to Hyperion played into our schedule:

(1) Peak Memory Usage of path guiding data is lower with smaller iterations: The radiance
estimates recorded with the Radiance Recorder get stored for the duration of an iteration.
After each iteration, the data is used to update the learned guiding distributions, and gets
cleared afterwards. The longer the iterations, the more path guiding data gets accumulated
at the same time, which increases memory usage. For this reason, we set our maximum
iteration size for path-guided renders lower than for non-path-guided renders.

(2) Quality of Image Result improves with smaller iterations: Since we only update the
guiding distribution after every iteration, it is beneficial to have smaller iterations to allow
more frequent updates; this way, the guiding distribution converges faster and the samples
will have lower variance earlier on. The final image will look less noisy. Small iterations are
mostly beneficial early in a render, before the guiding distributions have converged.

(3) Render Time per SPP may increase with smaller iterations: Smaller iterations can lead to
longer render time as ray batching in our wavefront renderer becomes less effective, and
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the computations between iterations add overhead. Section 5.2.2 discusses an example of
such an overhead in detail.

5.2.2 Checkpointing A path guiding iteration schedule generally has smaller iterations than our
regular iteration schedule in Hyperion, because of the frequent training updates and the memory
considerations mentioned in Section 5.2.1. And as mentioned earlier, smaller iterations can lead
to higher average render times per SPP, because of the additional overhead between iterations.
With small iteration sizes, the checkpointing at the end of every iteration can make up a sizeable
portion of the total render time, which is not surprising: The number of image buffer outputs in a
production shot can be large to allow flexibility in compositing. This often includes outputs such
as: mattes, per-light emission, albedo, depth, variance.
The amount of checkpointing overhead is scene dependent; in a scene with complex light

transport where traversal and shading take very long, the overhead of frequent checkpointing may
be insignificant. A simple scene, on the other hand, may have very fast light transport computations,
and the overhead of checkpointing can be significant relative to the total render time. Moreover,
the absolute cost of a single checkpoint can be scene dependent; for example, the number of matte
and emission buffers we write out can vary. If we make heavy use of separating emission into
different buffers, the number of buffers can become very large for scenes with many light sources.
Disabling checkpoints to save render time is not an option in production. In a production

environment that makes use of a renderfarm, render jobs get bumped from one machine to another
frequently. Checkpointing relevant data structures and image buffers is crucial to ensure efficient
resumption of render jobs. It’s generally a good practice to produce a checkpoint in geometrically
increasing intervals, aligning with the regular Hyperion iteration schedule.
Therefore, we employ a checkpoint skipping logic for path guiding iteration schedules. The

skipping logic ensures that we are producing the same number of checkpoints in a path guiding
iteration schedule, as in a regular Hyperion iteration schedule. The skipping logic works with
arbitrary path guiding schedules, assuming the path guiding iteration schedule generally has
smaller or equal sized iterations compared to the regular iteration schedule. This is always true in
our case.

Skipping Logic Our skipping logic is conceptually simple. Ideally, we write checkpoints at the
same cumulative SPP counts as our non-path-guided renders, which use geometrically increasing
intervals. For example, for a 128 SPP render, we ideally write a checkpoint after iterations with the
following cumulative SPP counts, and skip checkpointing for all other iterations:

4 8 16 32 64 128

However, the cumulative SPP counts at each iteration can be irregular in a path guiding iteration
schedule. The cumulative SPP count at each iteration could be as follows:

1 2 3 4 5 6 7 8 10 14 22 38 54 70 86 102 118 128

Therefore, we write checkpoints at iterations whose cumulative SPP count is closest to the ideal
cumulative SPP count. More precisely, it’s the iteration with the next smaller or equal cumulative
SPP count. In the above example, we would perform checkpoint skipping as follows:

��1 ��2 ��3 4 ��5 ��6 ��7 8 ��10 14 22 ��38 54 ��70 ��86 ��102 ��118 128
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Checkpoint after
every iteration

Checkpoint skip-
ping logic

Render a) 17.91% 3.19%
Render b) 16.02% 2.58%
Render c) 9.82% 1.47%
Render d) 6.85% 0.95%

Table 2. Percentage of render time (wall) spent on checkpointing when using a path guiding iteration schedule.
The left column shows the percentage if we create a checkpoint at the end of every iteration. The right column
shows the percentage if we employ the skipping logic discussed in this section. The percentage is calculated
as: time (wall) used for checkpointing, divided by total render time (wall). The percentages are averaged over
three runs.

Checkpoint Overhead Savings In Table 2 we report the checkpoint overhead relative to the
total render time, for four different shots from different shows, using path guiding. It illustrates
how the relative checkpointing overhead varies between shots. The left column shows the relative
checkpoint overhead if we perform a checkpoint at the end of every iteration. The right column
shows the reduced values as a result of the checkpoint skipping logic we employ in Hyperion.
Checkpoint skipping may not always lead to significant time savings, but there are no notable
downsides. Therefore, we apply checkpoint skipping by default in renders using path guiding.

(a) (b)

(c) (d)

Fig. 17. Renders used in Table 2, from a) Moana 2, b) Ralph Breaks the Internet, c) Frozen 2, and d) Strange
World. All rendered with path guiding at 64 SPP. © 2025 Disney

5.2.3 Consistent Alpha Here we present a somewhat esoteric and unexpected issue that we ran
into with adjusting Hyperion’s iteration schedule for path guiding. We include a discussion of this
problem here not so much because we expect any other implementers to run into the exact same
problem, but more so as an example of the kind of cascading secondary effects that implementing
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path guiding into a complex production system can have and therefore the care that must be taken
when considering how to fit path guiding into a production renderer.

Hyperionmakes extensive use of adaptive sampling.With adaptive sampling, Hyperion interprets
the requested SPP as an overall sample budget instead of a per-pixel budget, meaning that on
average over the entire framebuffer, the requested SPP level should be reached, but individual pixels
may be allocated SPP values potentially significantly below or above the requested SPP level. How
many SPP an individual pixel receives is guided by a running estimate of variance for that pixel.
We refer the reader to Burley et al. [Burley et al. 2018] for the specific details of this scheme.

One practical challenge that adaptive sampling raises is alpha inconsistency between render
passes. In production rendering workflows, lighters often break out different elements in a scene
onto separate render passes to allow for both more creative choices in lighting and more flexibility
in compositing. If a pixel exists on the boundary between two elements on separate passes that
must be added together in compositing, then that pixel in each pass may end up with a fractional
alpha value, with the expectation that alpha values for the same pixel across all render passes
should add up to 1.0. However, adaptive sampling can distribute different SPP counts to the same
pixel across different render passes, resulting in the total alpha value adding up to not exactly 1.0;
whenever this discrepancy occurs, compositing artifacts can appear along the edge of geometry.

Our solution to this problem is consistent alpha, in which adaptive sampling is applied to color
channels but the alpha channel is rendered using a fixed SPP number per pixel that is identical
across all render passes. In practice, the way consistent alpha is implemented is that the renderer
traces alpha and color on the same ray and keeps a running tally of how many samples each has
received; once the target alpha SPP number for a given pixel has been reached, additional rays
for that pixel only contribute to color. If the adaptive sampler decides that no more color samples
are needed for a given pixel but the alpha SPP target has not been reached, then Hyperion adds
additional alpha-only rays for that pixel to the last iteration of the render until the target alpha
SPP is reached.

In wavefront renderers, a common design pattern is for camera ray generation to be interleaved
with the main ray processing system in some way [Laine et al. 2013; Lee et al. 2017], and Hyperion
is no exception here. The reason for this pattern is because camera rays are required to "prime"
the rest of the system, and as paths are completed, maximum occupancy can only be maintained
if new paths are started. Hyperion previously implemented this pattern by running camera ray
generation on a separate thread in parallel with the main ray processing system. Generated camera
rays were placed into a first-in-first-out (FIFO) waiting queue, from which the main ray processing
system pulled work off as needed. In order to ensure maximum occupancy of all processor cores,
the sum of camera ray generation threads and main processing threads on a net oversubscribes the
number of underlying physical cores, and the renderer relies on the underlying operating system’s
pre-emptive multitasking to "naturally" balance these two systems.

Normally, the balance of work was weighted heavily in favor of main ray processing because 1.
normally in the last iteration there are many more secondary rays than camera rays and 2. main ray
processing is a much more expensive operation than camera ray generation. As a result, camera ray
generation was typically effectively rate limited, which meant that in practice the rate of camera
rays going onto the queue of waiting work typically was roughly balanced by the rate of work
being pulled off of the queue for processing. When these two rates were balanced, the size of the
FIFO queue between the two systems was relatively small. When Hyperion is calculating consistent
alpha, the number of additional alpha-only camera rays that need to be generated can be very large
if adaptive sampling stopped sampling large swaths of the image plane at SPP levels well below
the target average. However, because in a non-path-guided render the last iteration contains half
of the total SPP of the entire render, the large number of alpha-only rays needed for consistent
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alpha is almost always still small relative to the total quantity of rays to be processed in the last
iteration, allowing the balance between camera ray generation and main ray processing rates to be
maintained.

As discussed in Section 5.2.1, for path guiding, Hyperion’s iteration schedule is adjusted to make
iterations contain fewer SPP to allow for more frequent guiding distribution updates. One of the
adjustments mentioned earlier is that themaximum iteration size is set to be smaller for path guiding.
One effect of this change is that the last iteration of a path-guided render is considerably smaller
than the last iteration of a non-path-guided render. This change had an unexpected secondary
effect when coupled with consistent alpha. Because additional alpha-only rays for consistent alpha
are only generated in the last iteration, on scenes where a very large number of alpha-only rays are
generated, in path-guided renders the number of alpha-only rays could sometimes vastly eclipse
the total number of regular rays to be processed in the last iteration. When this happened, the
balance between camera ray generation and main ray processing would sometimes shift rapidly in
favor of camera ray generation, which led to the size of the FIFO queue of camera rays to balloon
in size, which in turn resulted in exploding memory usage by the renderer. Before we implemented
the Radiance Recorder data structure, all rays of all types had to pre-allocate enough memory to
carry all potentially needed path guiding information, which further exacerbated the memory
usage spike caused by camera rays piling up in the FIFO queue.

Our solution to this problem was to move camera ray generation from running in parallel to main
ray processing to instead run alternating with main ray processing. Now, as Hyperion completes
work in main ray processing, if occupancy drops below a certain threshold, Hyperion will pause
starting any additional work in main ray processing, run camera ray generation until the minimum
occupancy threshold has been reached, and only then proceed with beginning new work in main
ray processing.

5.3 Practical Realities of Production Rendering
This section discusses production rendering conditions that may differ from the conditions in a
research environment, and can influence the perceived gain of path guiding. In our production tests,
we have observed cases where path guiding brings significant improvement, and we will discuss
a selection of shots in more detail later in Section 5.4. But before looking at image comparisons,
we provide more context into what it takes from a new method, such as path guiding, to bring
significant benefit to production. In fact, it can be difficult for a method that proved effective in a
research context, to bring the same gains in production.

5.3.1 Scene Complexity Path guiding is a powerful noise reduction technique, but it adds
computational cost. It is not equally effective in all scenes, and care needs to be taken to employ
it only in situations where its overhead will amortize. It mostly brings benefits in scenes where
a non-path-guided render has significant noise levels as a result of suboptimal BxDF or phase
function sampling. But production scenes can be surprisingly simple in terms of lighting setups,
since they are optimized to render efficiently using standard sampling techniques.

Smart choice of light source type and placement can greatly help improve noise, while achieving
the desired look. During our testing, we have found that often scenes can have surprisingly simple
lighting setups with a lot of direct lighting. Hyperion provides features for more artistic control
over the lighting in the scene, some of which reduce the need for elaborate indirect lighting setups.
For example virtual lights, which are non-occluding and therefore invisible to the camera, can be
placed within the view frustum and directed at regions that need more illumination. The shot we
discuss in Section 5.4.5 illustrates this well. Moreover, our artists have learned to author scenes
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that work well for unidirectional path tracing. In such scenarios, the noise reduction due to path
guiding can be small, which makes it more difficult to amortize path guiding’s cost.

5.3.2 Production Renderer Baseline There are still plenty of complex shots where the non-
guided sampling techniques will lead to a lot of variance in the final image, and path guiding
has potential to bring significant gains. However, production renderers such as Hyperion already
employ numerous optimization techniques by default to handle complex shots, most notably:
• Cache Points for Direct Illumination [Li et al. 2024]
• Outlier Rejection
• Path Simplification
• Adaptive Sampling
• Denoising [Dahlberg et al. 2019; Vogels et al. 2018]

Therefore, the baseline, rendered in a production renderer, can be much harder to beat than
a baseline rendered with a research renderer such as Mitsuba [Jakob 2010] or PBRT [Pharr et al.
2023]. Consequently, we cannot expect gains observed in a research setting to translate directly
into production. The following examples discuss three optimizations in Hyperion that can affect
path guiding’s perceived gain.

Example: Cache Points for Direct Illumination Figure 18 shows a shot from Frozen 2 that
has a complex lighting scenario: many light sources, both directly and indirectly illuminating the
scene, as well as volumes. If rendered with standard light transport algorithms, this scene would
offer plenty of inefficiency for path guiding to leverage and improve upon. In Hyperion, however,
our cache points optimization for sampling direct illumination [Li et al. 2024], which is enabled by
default, already heavily improves this scene and leaves less room for improvement for path guiding.

Figure 18a shows an equal SPP comparison at 128 SPP. For both renders, we disabled Hyperion’s
cache points optimization, to illustrate path guiding’s gains without the optimization. We see
significant noise reduction at equal SPP in the render that uses path guiding. However, if we
leave our cache points optimization enabled, shown in Figure 18b, path guiding brings less noise
reduction at equal SPP. We still see some noise reduction in some areas thanks to path guiding, but
the perceived gain is much smaller than in the example without the cache points optimization.

Example: Throughput Clamping Seeing path guiding reduce noise at equal SPP, as in the
previous example above, is a good indicator that supports the use of path guiding for a given shot.
However, as this next example demonstrates, image comparisons can be more difficult to interpret
in cases where the use of path guiding alters the image appearance. Hyperion employs certain
biased optimization techniques, such as throughput clamping. Throughput clamping is a commonly
used noise reduction technique in which we clamp the path throughput if it reaches a specific
maximum value. This helps reduce fireflies that occur if sampling distributions are not proportional
to the integrand and lead to an imbalanced numerator and denominator in the throughput, at the
cost of adding a small bias. This noise reduction technique was especially important before the era
of ML-based denoisers, which can easily remove fireflies as a post-processing step. Nevertheless,
throughput clamping is still used today in Hyperion, but much more conservatively with higher
clamping thresholds.

Path guiding reduces the use of throughput clamping, because learning better sampling distribu-
tions leads to more balanced throughputs. As a result, we end up with cases where a path-guided
render is brighter than the baseline, because less energy gets removed by outlier rejection; path
guiding acts as an unbiased, but expensive alternative to throughput clamping. In such cases, it’s
not trivial which image is preferred, since we do not strictly require our production renderer to
produce unbiased results.
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(a) Rendered without cache points optimization. With path guiding (bottom left) and without path guiding
enabled (top right).

(b) Rendered with cache points optimization. With path guiding (bottom left) and without path guiding
enabled (top right).

Fig. 18. Equal SPP comparison of path guided vs. baseline renders on a shot from Frozen 2. In a) our cache
points optimization is disabled and the noise reduction due to path guiding is more significant than in
comparison b), where our cache points optimization is enabled. © 2025 Disney

Figure 19 shows a shot from Strange World, where path guiding leads to brightening in some
areas. Atmospheric volumes and subsurface scattering add complexity to the light transport in
this shot. The crops on the right of the figure show the result with (top left triangle) and without
path guiding (bottom right triangle). When rendering this shot without path guiding, the complex
light transport would lead to a large amount of fireflies in some areas, which is what throughput
clamping prevents at the cost of a slight darkening. Path guiding leads to a visibly brighter, less
biased result.

Example: Path Simplification We describe our approach to path simplification in detail in
[Burley et al. 2018]. In short, path simplification employs material simplification and roughening at
secondary bounces to simplify light transport at the price of bias. Figure 20 shows an interior scene
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Fig. 19. Shot from Strange World showing brightness difference when using path guiding. The crops on the
right of the figure show the result with path guiding (top left triangle) and without path guiding (bottom
right triangle). © 2025 Disney

from Ralph Breaks the Internet, filled with a forward-scattering participating media illuminated from
outside through a glass door. Without path simplification enabled (bottom right), most illumination
seen in this scene is from caustic paths, which together with the forward-scattering volume,
leads to excessive noise. With path simplification enabled (top left), the volume gets closer to
isotropic after a few bounces, and the glass door’s material gets simplified to a light-attenuating
pass-through material, making shadow ray connections to the outside light source trivial. However,
path simplification can impact the rendered scenes in unpredictable ways, and is heavily dependent
on heuristics that may or may not work well in particular scenes.
Path simplification is enabled by default, and using path guiding on top of that in this scene

seems to yield only minor benefits, as shown in Figure 20b. However, with path simplification
disabled, as shown in Figure 20a, path guiding yields massive benefits over the baseline; it nearly
allows us to breach the gap between the renderings with and without path simplification enabled.

5.3.3 Evaluation Criteria in Production The decision to adopt a new method in a production
renderer and enable it for production shots is more involved than evaluating image comparisons;
we also look at considerations specific to our production environment, which may be less relevant
in research environments. In the following, we give three such examples.

Amortization Rate: Path guiding usually takes more time to render a single path sample, but
can amortize its additional cost by providing faster convergence. In the beginning of the render,
path guiding is most certainly performing worse than the baseline, as its learned distributions are
not optimal yet and don’t provide much benefit over BxDF sampling. How many SPP it takes to
amortize its cost can vary for each scene. If a baseline render only requires very low SPP counts
to get to an acceptable noise level, there might not be enough room for path guiding to amortize
its cost. This is an important factor to consider in production environments, which make use of a
denoiser to reduce SPP counts even further. As an extreme example, consider a render that reaches
an acceptable noise level after just 16 SPP without using path guiding. With our path guiding
configuration, we use the first 8 SPP of the render to learn guiding distributions, and only start
using the distributions after these first 8 SPP. This then only leaves us with 8 remaining SPP to
make use of the better distributions and bring significant noise reduction in the final image. For
non-volume-heavy scenes, SPP counts of 32 to 64 are often sufficient, while volume-heavy scenes
may use more; 256 to even 1024 SPP are not unheard of. Therefore, it’s important to choose suitable
SPP counts when doing evaluations, as path guiding gains are subject to the SPP budget.

Interactivity: When assessing the performance of a method or feature, we consider how it
affects artist iteration time. Time-to-first-pixel is a relevant metric in production: A production
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(a) Rendered without path simplification. With path guiding (top left) and without path guiding enabled
(bottom right).

(b) Rendered with path simplification. With path guiding (top left) and without path guiding enabled (bottom
right).

Fig. 20. Equal SPP comparison of path guided vs. baseline renders on a shot from Ralph Breaks the Internet,
rendered with 64 SPP. a) Compares the rendered result if path simplification is disabled, and b) compares the
result if path simplification is enabled, which is our default in Hyperion. © 2025 Disney

renderer not only renders final frames on the renderfarm, it is also a tool for making artistic
decisions quickly. Some artistic decisions can be made already after seeing a handful of SPP, long
before the render has finished. For example, we might already see if a light is too bright or too
dim, or the tone is off, even if the image is still very noisy. In these cases, every second added at
the beginning of the render affects artist iteration time much more than seconds added at later
stages in a render. Time-to-first-pixel is a limiting factor for artist iteration time, which is one of
the primary metrics we want to minimize. Therefore, changes in time-to-first-pixel also affect how
we perceive the gain of a new method.

Physical Correctness: In research experiments, we often use error as an evaluation metric,
and we calculate it by comparing the result with a groundtruth image rendered at extremely high
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SPP. Bias increases this error and is often considered undesirable. In production, we also prefer
unbiasedness if possible. Nevertheless, a small and consistent bias or physical inaccuracy is not
necessarily a problem as long as it still provides sufficient predictability to allow the artists to render
the scene they envision. As mentioned in Section 5.3.2, Hyperion employs certain biased techniques,
such as throughput clamping, path simplification and denoising, that offer noise reduction, at the
expense of a small bias or physical inaccuracy. We have also seen in Section 5.3.2 that path guiding
can provide less biased results in cases where our baseline Hyperion version does not. Nevertheless,
unbiasedness is not our main motivation for using path guiding in such cases, and we fall back to
other evaluation metrics to justify its use.

5.4 Discussion of Production Shots Rendered with Path Guiding
This section presents the results of testing path guiding on a selection of shots from Disney
Animation’s past shows that we have not discussed in earlier sections. In addition to render
statistics data, we provide an analysis of path guiding’s strengths and weaknesses on given shots,
which requires understanding of the scene and lighting setup that is often not visible in the final
images.

5.4.1 Experiment Setup and Comparison Metric The baseline renders we use for comparison
reflect the default Hyperion configuration, which has several optimization techniques enabled,
as mentioned in Section 5.3.2. For the path guided renders, we enable path guiding on top of the
already existing optimizations. The reference renders are higher SPP renders of the given scene.
For the following results, we show equal SPP comparisons and provide relevant statistics for

each image, such as render time and memory usage. While equal time comparisons or time-to-
unit-variance comparisons are often used in research evaluations, the results depend on various
factors influencing render time. Differences in machine, thread count, and asset loading time can
influence render time. And different renderer architectures and production environments might
react differently to a path guiding implementation in terms of render time overhead. Therefore, we
provide equal SPP comparisons, which may be more transferable to other environments.
For the following tests, we ran each render 3 times and discarded the first of the three runs

to eliminate inconsistencies due to loading assets into the cache in the first run. The time and
memory statistics shown are therefore the average of 2 runs. We report peak memory usage, which
is subject to slight variations between runs due to small differences in the order and timing of
memory allocations and deallocations during the parallel execution of the render jobs. Therefore,
in cases where path guiding does not affect peak memory usage significantly, it is possible that
path-guided renders can occasionally have slightly lower memory usage than a non-path-guided
renders.

5.4.2 Shot 1 The shot from Moana 2 in Figure 21 shows an indoor scene with most illumination
seemingly coming only from candles. The candle flames are set up as emissive geometry. In reality,
there are many more virtual light sources invisible to the camera: several quad lights are directed
at the characters. Moreover, small spherical light sources are placed around the candle flames, to
further support the candle-like illumination. The main source of noise are the candle flames made
of emissive geometry.
Our cache point optimization for direct light sampling does not consider emissive geometry

by default; in this scene, it will instead favor sampling all of the virtual lights. As a result, the
probability of a path hitting such a small emissive geometry is very small, and leads to fireflies.
For path guiding, on the other hand, the type of light source does not matter for learning the
guiding distributions. Paths will be directed towards the emissive geometry and its areas of indirect
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contribution. This leads to reduced noise at equal SPP, as shown in Figure 21. It’s important to
note that we also guide towards direct illumination with path guiding, which may also help in this
scene.

Hyperion offers an option to turn on emissive geometry sampling for our cache points optimiza-
tion, which also drastically reduces the noise in this scene without the use of path guiding. The
emissive geometry sampling render option is turned off by default, however, since it incurs a large
overhead at the beginning of the render during the generation of the cache points: we have to
evaluate the emission function for every single triangle of the emissive geometry. This overhead
only pays off in selected scenes, such as the one discussed here, because the increase in render
startup time can adversely affect artist iteration time. As discussed in Section 5.3.3, interactivity is
of high importance, and we therefore disable emissive geometry sampling by default.

This scene is a great example that demonstrates how path guiding can be an alternative to other
expensive optimization techniques. Moreover, path guiding reduces the need for manual finetuning
of render options affecting light sampling; guiding distributions simply guide the rays towards
directions of high illumination, regardless of the origin of such illumination. This also makes it
robust to handle novel sources of emission we might add in the future, which might need special
handling in other optimization methods we employ.

Baseline
Time (Wall): 150s
Time (Core): 1.60h
Memory: 26.9GB

Path Guiding
Time (Wall): 201s
Time (Core): 1.94h
Memory: 26.2GB

Reference

Fig. 21. A frame fromMoana 2. Equal SPP comparison rendered with 64 SPP. © 2025 Disney

5.4.3 Shot 2 Figure 22 shows a shot from Raya and the Last Dragon. It appears similar to the
shot we discussed in Section 5.4.2, as it appears mainly illuminated by flames. The scene setup and
type of light sources, however, differ very much from the previous shot. In this shot, the flames are
made of emissive volumes, and not emissive geometry. Therefore, the emissive geometry sampling
render option discussed in Section 5.4.2 will not improve the non-path-guided render. In addition,
this shot contains atmospheric volumes, visible on the right side of the image near the floor. This
atmospheric volume is a main source of noise in the non-guided render, since next event estimation
from inside the volume proves difficult in this shot. Our cache points optimization in fact supports
emissive volume sampling, which is enabled by default. But in this example shot, direct sampling
of the emissive volume, i.e. the flames, is not always effective: In Hyperion, we use a simple delta
tracking transmittance estimator on shadow rays. This means that we get a binary transmittance
estimate that is either 0 or 1, which is a noisy estimate. In addition, the emissive volume from the
flame is surrounded by non-emissive smoke, which makes it even harder for a shadow ray to reach
the emissive flame without encountering a scattering event. Therefore, sampling direct illumination
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is difficult in this shot. Moreover, paths that are lucky enough to reach the emission indirectly
through BxDF and phase function sampling may suffer from imbalanced throughputs, leading to
fireflies. Path guiding can help in this situation since it provides guiding distributions that lead the
path towards the emissive volume, eliminating the need for effective next event estimation from
inside the volume.

Baseline
Time (Wall): 697s
Time (Core): 7.78h
Memory: 20.1GB

Path Guiding
Time (Wall): 824s
Time (Core): 9.12h
Memory: 20.0GB

Reference

Fig. 22. A frame from Raya and the Last Dragon. Equal SPP comparison rendered with 64 SPP. © 2025 Disney

5.4.4 Shot 3 Figure 23 shows a shot from Frozen 2 that is permeated by a strongly forward-
scattering volume (fog) but illuminated mainly by the sky/sun. When scattering according to BxDF
sampling, we tend to scatter forward, parallel to the floor. When doing light sampling, we tend to
sample orthogonally to the floor. In the former case we don’t reach the light, and in the second
case the phase function evaluates to a very low value. Ideally, paths would follow a trajectory that
slowly increases inclination towards the sky after every scattering event, such that all scattering
events evaluate to a reasonably large throughput, while we eventually reach an inclination that
makes light sampling possible. Product path guiding, which OpenPGL supports, naturally results
in such paths and significantly reduces variance in this scene.

Baseline
Time (Wall): 601s
Time (Core): 6.13h
Memory: 20.7GB

Path Guiding
Time (Wall): 694s
Time (Core): 7.00h
Memory: 24.9GB

Reference

Fig. 23. A frame from Frozen 2. Equal SPP comparison rendered with 64 SPP. © 2025 Disney
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5.4.5 Shot 4 In the shot from Moana 2 shown in Figure 24, the camera is inside a canoe, and
sunlight is coming through a slightly opened deck hatch. As the sun- and skylight mostly illuminate
this shot indirectly, this shot offers itself for path guiding. We indeed observe noise reduction at
equal SPP when using path guiding. The noise reduction is clearly visible near the hatch door and
objects close by, but less in the areas further away, for example the area around the large plant in
the foreground on the right side.

The reason for the spatially varying degree of noise reduction is the lighting setup using virtual
lights: in addition to the sunlight coming through the side of the hatch door, several virtual quad
lights are placed close to the ceiling, pointing downwards. In fact, these virtual lights make up
most of the illumination visible in the foreground of this scene. Virtual quad lights can be sampled
directly, and lead to much faster convergence, compared to a setup where all light comes from
outside the canoe. Unsurprisingly, the areas where the virtual light contribution dominates are also
the areas where path guiding shows less improvement. And areas unaffected by the virtual quad
lights show great noise improvements at equal SPP.

Baseline
Time (Wall): 926s
Time (Core): 10.0h
Memory: 25.6GB

Path Guiding
Time (Wall): 1103s
Time (Core): 11.7h
Memory: 29.3GB

Reference

Fig. 24. A frame fromMoana 2. Equal SPP comparison rendered with 64 SPP. © 2025 Disney

6 FUTUREWORK

This section gives an overview of our ongoing efforts to improve our path guiding system in
Hyperion. Some of the efforts mentioned are already available for experimentation in Hyperion
today, but may need further refinement based on insights gained from ongoing testing. At the
same time, we are considering novel approaches that require more development and which will
hopefully make it into our production environment in the future.

6.1 Improving Sampling Techniques
For combining sampled directions drawn from path guiding with directions drawn from BxDF
sampling, we currently implement both traditional multiple importance sampling (MIS) [Veach
1998] and resampled importance sampling (RIS) [Talbot 2005], for both surfaces and volumes. See
also Chapter 1 Section 3 for more details on guided sampling based on MIS and RIS. For RIS, we
further allow users to tune the number of samples considered. However, the results presented
in these course notes are with RIS disabled. We are continuing to evaluate RIS versus MIS for
combining results and, with the goal of preventing artists from needing to worry about deeply
technical details like the choice of strategy for combining samples, we are aiming to find reasonable
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defaults that generally work well for a majority of our production scenes. Finding good default
settings continues to be a work in progress.

We have found experimentally that combining path guiding with adjoint-driven Russian roulette
and splitting [Vorba and Křivánek 2016] is generally beneficial, but this work remains experimental
and has yet to be fully incorporated back into our main production branch. See Chapter 1 Section
4.2 for more details on guided Russian roulette strategies. In a similar vein, we have experimented
with using a purely spatial form of reservoir resampling [Bitterli et al. 2020] for improving direct
lighting samples with encouraging results, but figuring out how to incorporate this idea with path
guiding remains a work in progress.

6.2 Sample Combination Scheme
The discussion of our path guiding iteration schedule in Section 5.2 leaves out details on how
we weight the image results of different iterations. With path guiding, earlier iterations’ results
often have higher sample variance than later results. Therefore, there exist techniques that aim
to optimize combining the results of different iterations to reduce the variance of the final image,
e.g. an inverse-variance-based weighting scheme [Müller 2019], or schemes that discard earlier
results entirely [Müller et al. 2017]. Our implementation currently does not optimize combining the
per-iteration results and weighs them all equally. While this conservative approach ensures that
path-guided renders are never noisier than non-path-guided renders at equal SPP, it can also limit
the amount of improvement that path guiding can provide. We aim to explore weighting schemes
in the future to fully leverage the potential of path guiding.

6.3 Estimating Efficiency
The overhead of path guiding in our current integration is significant. As discussed earlier, not all
scenes benefit from guiding equally, and in some cases enabling path guiding negatively impacts
overall rendering efficiency. Therefore, having path guiding as an always-on feature in our renderer
is not desirable. To help users determine whether path guiding should be enabled in a given frame or
sequence of frames, we provide statistics during path guiding that estimate the expected efficiency
gain from path guiding (or gain in time-to-unit-variance) from low SPP renderings. We exploit
the fact that the very first rendering iteration does not use path guiding, since no guiding model
has been learned yet, and estimate the efficiency of the rendering based on crude heuristics. We
repeat the same procedure for a later render iteration that uses path guiding, and compare the two
efficiencies. If the efficiency went up by a large enough margin between the non-path-guided and
path-guided iteration, we recommend the usage of path guiding in this scene, otherwise we don’t.
Ideally, the later path-guided iteration for this measurement is taken late enough in the rendering
process, such that the guiding model is already yielding most of its benefit, and early enough in
the rendering, such that the user does not get blocked too long to wait for the recommendation.
The efficiency is the inverse product of the error and the cost. We approximate the error by the
sample variance of the pixel color, averaged over the entire image, and approximate the cost by the
average path length of all paths created during the measured iteration. While the cost estimate is
especially crude since it ignores the increased sampling costs arising from more complex sampling
routines, and the overhead from gathering training data, shorter iteration size and training cost, we
found that efficiency gain estimates based on these heuristics are usually precise enough for our
purpose. We believe such systems, and potentially fully automated versions thereof, in the spirit of
various other variance and efficiency aware systems [Grittmann et al. 2022; Rath et al. 2022, 2020]
to be crucial components. They help increase the acceptance of sophisticated sampling methods
that might not always amortize, such as path guiding, into production environments.
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6.4 Going Neural
The path guiding methods we experimented with so far used classical machine learning techniques
and do not rely on special hardware, e.g., PPG [Müller et al. 2017] and PAVMM [Ruppert et al. 2020].
However, with the increased availability of GPU hardware on workstations and render clusters,
sampling methods relying on neural networks to learn the distributions become attractive. Such
methods promise to learn more accurate models than their classical counterparts, and hence might
reduce variance in our renderings even more. Especially given that many production renderers,
such as Hyperion, are purely CPU-based, requiring GPU resources to train such models might be
an attractive way of making use of such hardware for rendering without the need to completely
overhaul the existing rendering systems. We recently started examining such methods in the
context of production rendering with promising initial results [Rath et al. 2025].

6.5 Guiding Other Sampling Decisions
So far, we have used path guiding only to improve directional sampling. Much of the noise in
production rendering originates from other sources, though, for instance, from undersampling
thin volumes. While Hyperion provides a sophisticated system to improve direct light sampling
with some limited application to volumes [Li et al. 2024], no comprehensive system for better
general volume sampling has been implemented yet. Methods for distance guiding in volumes or
scatter probability guiding [Herholz et al. 2019; Xu et al. 2024] seem like promising avenues to
further reduce variance, especially since some of these methods can piggy-back on the existing
data structures that are already used for directional path guiding.

7 CONCLUSION

We presented the second-generation path guiding system in use today in Disney’s Hyperion
Renderer. While we have come a long way since our earlier first-generation path guiding system,
we consider the modern system to still be a work-in-progress, and these course notes represent a
snapshot of the progress we have made and of the myriad of problems we have had to solve. We
had to resolve architectural incompatibilities between wavefront path tracing and path guiding
by developing new data structures. Developing powerful visualizations and debugging tools was
crucial to validating our implementation and helping us solve further production problems. In order
to educate artists and TDs on how to use path guiding and give production confidence, we ourselves
had to put considerable effort into analyzing how path guiding behaves in complex production
scenes and how various practical production rendering factors influence the relative performance
of path guiding. We are very excited that, after all of this work, we are now finally at a point where
we are embarking on the first large-scale deployment of path guiding into active productions, and
we still have further improvements to make to the current system. We hope that everything we
have learned will be useful to others interested in path guiding in both production and research.
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Efficient Rendering of Caustics: Photon Guiding at Corona
MARTIN ŠIK, Chaos, Czech Republic

Fig. 1. Corona’s caustics solver automatically renders directly and indirectly visible caustics without requiring
the user to set any technical parameters. In these course notes, we discuss the latest improvements to our
caustics solver.

1 INTRODUCTION

In this part of the course notes, we will describe an algorithm used in the Corona Renderer9 for
efficient rendering of caustics. Although this algorithm was already presented at EGSR some time
ago [Šik and Křivánek 2019a], in this course we will mainly discuss the improvements made to the
solver since.
Caustics play a crucial role in enhancing the perceived realism of scenes that feature highly

glossy reflective and refractive surfaces. They significantly impact rendering in various fields,
including visual effects (VFX), product design, the automotive industry, and, most notably for
our purposes, architectural visualization. Unfortunately, caustics are notoriously hard to render
with path tracing, the most commonly used rendering algorithm in production including Corona
renderer. The reason is that none of the two common sampling techniques utilized in path tracing,
bidirectional scattering distribution function (BSDF) sampling and direct illumination sampling,
can efficiently sample caustics paths (see Figure 2).
Several methods for rendering caustics within a Monte Carlo framework have been suggested

over the years, including photon mapping [Hachisuka and Jensen 2009; Hachisuka et al. 2008; Jensen
1996], bidirectional path tracing [Lafortune and Willems 1993; Veach and Guibas 1994], and hybrid
algorithms that enhance robustness by integrating both techniques [Georgiev et al. 2012; Hachisuka
et al. 2012; Křivánek et al. 2014]. However, these combined solutions often introduce considerable
implementation complexity and increase run-time overhead compared to simpler unidirectional
path tracing. Consequently, they are seldom utilized in production rendering [Christensen et al.
2018; Křivánek et al. 2018]. For that reason, we were looking for a more lightweight solution that
could be applied in Corona renderer.
9www.corona-renderer.com

www.corona-renderer.com
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a) BSDF sampling b) Direct illumination

Fig. 2. Neither BSDF sampling nor direct illumination sampling can efficiently sample caustic paths. a) BSDF
sampling has low probability of sampling the direction that leads to the light source - once the direction
from the shading point (blue) is sampled, rest of the path (dashed) is deterministic due to delta refractions. c)
Direct illumination can’t make the connection (dashed) from the shading point (blue) through the refractive
object to the sample (green) on the light source.

1.1 Path guiding vs Corona’s caustics solver
One possible solution to efficient caustics rendering is path guiding. Unlike in uninformed unidirec-
tional path-tracer, path guiding can efficiently generate directions from the shading point that leads
to a caustic path. We wanted to use path guiding in Corona to render caustics, so we would not have
to use bidirectional methods with their shortcomings. Unfortunately, our experiments have shown
us that path guiding was not always sufficient to handle all caustic paths. While path guiding was a
significant improvement over vanilla path tracing, in many scenes the caustics were still discovered
after many rendering passes, the guiding distributions were not learning fast enough, and thus the
image convergence was slow. Figure 3 shows a comparison of a scene with caustics rendered using
vanilla path tracer, path guiding provided by the OpenPGL library 10, and the Corona’s caustics
solver.

a) Path tracing (10 min) b) Path guiding (10 min) c) Our approach (10 min)

Fig. 3. A same-time comparison of renderings of the bathroom scene, which is lit from the outside and from
the bulbs through glass, so all the illumination in the scene is due to caustics. On the left, vanilla path tracing
completely fails to capture the illumination from caustics. In the middle, using path guiding provided by the
OpenPGL library improves the result significantly. On the right, the Corona’s caustics solver delivers the
cleanest result.

Since we found that path guiding was not sufficient for rendering caustics, we have opted to
base our caustics solver on bidirectional methods. In Section 2 we introduce the initial version of
10https://github.com/RenderKit/openpgl

https://github.com/RenderKit/openpgl
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our caustics solver and describe how we have tackled the disadvantages of bidirectional methods.
In Section 3 we discuss the improvements we have made to our solver since its introduction to
Corona. Section 4 covers the latest addition to our caustics solver, rendering of volumetric caustics.
Finally, in Section 5 we shortly talk about future work.

2 CORONA’S CAUSTICS SOLVER - INITIAL IMPLEMENTATION

In this section we briefly introduce the original Corona’s solver before we will discuss the
additional improvements in the next section. For a more comprehensive overview of the initial
version of our solver, see our previous work [Šik and Křivánek 2019a]. Our objective was to provide
Corona Renderer users with a caustics solver that efficiently handles all types of caustics, both
reflective and refractive, whether viewed directly or indirectly. To promote user-friendliness, we
wanted for this solver to require minimal parameters, ideally just a single checkbox to toggle it on
and off. Since our solver is based on bidirectional methods, we acknowledged that the solver will
introduce some overhead compared to a standard path-tracer, but we tried to keep this overhead to
a minimum.
Our implementation is based on the bidirectional algorithm known as Vertex Connection and

Merging (VCM) [Georgiev et al. 2012; Hachisuka et al. 2012]. VCM combines the path sampling
strategies of bidirectional path tracing with radiance estimates from photon mapping [Hachisuka
and Jensen 2009; Hachisuka et al. 2008; Jensen 1996]. As a path is traced from the camera, photon
map lookups are performed at each camera path vertex. This photon mapping component is
crucial for accurately rendering indirectly visible caustics, such as those found at the bottom of a
swimming pool. The full VCM algorithm effectively handles all types of caustics and provides a
strong foundation for our work. Unfortunately, the baseline VCM has three main issues:
Computational cost. VCM can be several times slower than path tracing. It has to trace paths

from both the lights and the camera, calculate weights for their combinations, and perform photon
lookups. In scenes where path tracing works well, using VCM is overkill.

Photon guiding. If photon paths are not guided toward important parts of the scene, convergence
can be very slow. This is a major issue in indoor architectural scenes, where skylight enters through
small openings like narrow windows.

Number of photon paths. Users usually have to tweak the number of photon paths traced in each
algorithm iteration, and this interferes with good usability.

In the following text, we discuss how we addressed these issues in our caustics solver.

2.1 Simplified Vertex Connection And Merging
To reduce overhead as much as possible, we removed all bidirectional connection path sampling
techniques from VCM. Without these techniques, we can still efficiently render all types of caustics.
Furthermore, we do not use pure light tracing (e.g. paths from the light sources connected to the
camera). While this technique is effective at handling directly visible caustics, it also requires
additional buffer for each render element (aka render pass), which can be prohibitively memory
expensive for large image resolutions. The only techniques that remain are original path tracing
techniques and photon lookups.

We further limit where we utilize photon lookups. We don’t perform photon lookups for paths
that have high enough probability with path tracing techniques (an idea borrowed from Lightweight
Photon Mapping [Grittmann et al. 2018]). We also store photons only after interaction with highly
glossy materials, and we stop tracing photon paths after two consecutive diffuse bounces.



Path Guiding in Production and Recent Advancements 71

a) Reference rendering b) Unguided photon path tracing

c) Adaptive emission map d) Our Metropolis guiding

Fig. 4. Photon path guiding. a) Reference rendering. b) No photon path guiding. c) Guiding based on an
adaptive emission map [Grittmann et al. 2018]. d) Our Metropolis-based guiding.

Finally, we modify the emission of photons from environment illumination maps, so that only
high-frequency environment illumination is considered. This also means that we do not trace any
photons from uniform environment maps.

2.2 Photon guiding
To guide photons we have tried both adaptive emission of photons [Grittmann et al. 2018] and
Markov chain Monte Carlo (MCMC) [Metropolis et al. 1953; Šik and Křivánek 2019b]. MCMC
generates samples by randomly searching for a sample with a high value of target function and
once it finds it, it will slightly modify (or ’mutate’) this sample to create several different samples of
high value. More specifically, new samples are proposed by mutation kernels based on the current
sample, and a proposed sample is then randomly accepted based on its target function value. In
the case of rejection, the current sample is repeated. Figure 4 shows the comparison of the two
different guiding approaches.

In our experiments, MCMC could even in difficult scenes find the important caustic paths more
quickly compared to the adaptive emission, and thus we have decided to use it in our solver. For
the target function that drives the sampling, we have chosen a combination of visibility [Hachisuka
and Jensen 2011] and the inverse of the square distance to the camera. The visibility is a function
stored in a spatial subdivision structure that has a value of one in places where previous photon
lookup was successful and zero otherwise (initially we set it to one in places where camera paths
have their vertices). In this way, we ensure that photons are generated in the important regions of
the scene. Including the inverse of the square distance to the camera ensures that we generate more
photons closer to the camera and thus efficiently handle scenes with large caustics (see Figure 5).
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a) Reference rendering b) Binary visibility Metropolis sampling c) Our solution

Fig. 5. Handling of large caustics. a) Reference. b) Binary visibility based importance produces suboptimal
photon distribution: too many photons are concentrated far away from the camera, while the region near
camera is underpopulated. c) Our solution modulates the importance by the inverse squared distance from
the camera, producing a more equalized photon distribution.

2.3 Number of photon paths
Originally, we addressed the issue of determining the number of photon paths by detecting for how
many pixels are photons useful - i.e. they contribution is significant for the given pixel. We then
took this number multiplied by an experimentally verified constant and got the number of photon
paths. This requires some additional handling for render regions; see our previous work [Šik and
Křivánek 2019a]. Unfortunately, this is not always enough, and thus we have developed a more
robust method (see Section 3.3).

2.4 Additional details
To further improve how our caustics solver worked in cases of multiple light sources, we have
developed an adaptive algorithm for the selection of photon emitters based on their caustic contri-
bution (see our previous work [Šik and Křivánek 2019a] for more details). Although this algorithm
worked well in many cases, we have since improved upon it as discussed in the next section.

Another important detail is how we handle motion blur and dispersion. In the scene shown in
Figure 6, a moving car is being tracked by the camera. To correctly render caustics with motion
blur, we randomly choose separate times for the camera path and the photon path. During photon
lookup, we only use photons with a time similar to the camera path. Dispersion uses the same
approach; each photon has a selected wavelength, and a photon lookup then considers only photons
with wavelengths similar to the wavelength of the camera path. Note that using motion blur and/or

a) Incorrectly handled motion blur b) Correct motion blur c) Dispersion

Fig. 6. Handling of motion blur/dispersion in our caustics solver. a) Wrong solution, which smears caustics
reflected from a car tracked by the camera. b) Correct solution that takes into account time associated with
both a camera path and a photon path. c) We handle dispersion in similar fashion to motion blur. Image
courtesy of Rakete GmbH Munich.
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dispersion in the scene means that many photons will not be used, which limits the efficiency of
our old automatic detection of the number of photon paths, and a user often has to manually tweak
the number of photon paths.

3 CAUSTICS SOLVER IMPROVEMENTS

In this section we discuss various changes that we applied to our caustics solver since its initial
release. Their main goal is to improve the convergence of caustics rendering.

3.1 Light sources stratification
The first improvement we made to our original solver was to improve light sources stratification.
Although the previous version of our solver had an algorithm for adaptive sampling of light sources,
the fact that it was built on top of a Markov chain severely decreased its efficiency. It often happened
that the chain got "stuck" (i.e. was repeating the same sample or generating samples in its small
neighborhood) and kept generating photon paths just from the most caustic-contributing light
source.

To avoid this issue, we started to use multiple Markov chains instead of one. Each chain generates
photon paths just from a given light source or a group of light sources. The grouping is based on the
light sources hierarchical structure used for direct illumination sampling in Corona (see [Vévoda
et al. 2018] for more details). This allows us to use ordinary stratified samples to select light sources
for photon emission. As in the original version of the solver, light sources are sampled adaptively
based on their caustic contribution, but this time outside the MCMC framework. Once a light source
is sampled, the exact photon emission position and direction (as well as following photon scattering
directions) are generated using the associated Markov chain. Figure 7 demonstrates this process.
Using separate Markov chains for light source groups means that we can also improve MCMC

adaptivity. As stated above, MCMC generates samples by proposing mutations of the current
sample and accepting/rejecting the proposal. The proposal/mutations kernel can be adapted based
on the acceptance ratio - this allows us to increase or decrease the ratio based on all the previously
generated samples and achieve an optimal acceptance rate [Haario et al. 2001]. However, adapting
single Markov chain that generates photon paths from many different light sources is not accurate
enough - each light source might need a differently tuned mutation kernel. Using a separate Markov
chain for each light source group allows us to adapt each chain more precisely.

Fig. 7. In this schematic view we have two light groups (red, green). Our algorithm starts by sampling one of
the light groups and then the associated Markov chain is mutated. Its current sample (full line) is mutated
using a kernel adapted to this light group and a new proposal is generated (dotted line). Since each light
group has its own chain, each chain can focus on caustics generated by a single light group and thus the
whole state space is better explored.
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a) Old solver (30 min) b) New solver (30 min)

Fig. 8. A same-time comparison of renderings of the room scene with caustics formed on the back wall
by 3 light sources and by the light coming from the outside through the glass bricks. The photon paths
generated from the internal light sources are almost always accepted, however, photon paths generated by
the outside light source (environment) have much lower acceptance rate, their require more guiding. Due to
this disproportion a single-chain algorithm (a) will generate too many samples for the internal light sources
and not enough for the external one. By using multiple chains we can mitigate this issue (b).

We compare our previous version of the solver (with a single chain) and the new multi chain
variant in Figure 8. Our multi chain variant avoids the issue of generating too few samples from an
important light source that has lower acceptance rate compared to other light sources.

3.2 Adaptive emission
While using multiple chains allows us to better focus on each light group, there is still one source
of inefficiency. MCMC typically uses two types of mutations: small and large steps. The small step
mutates the previous sample using the adapted mutation kernel, its goal being to better explore
the caustic locally. The large step then generates a sample independent of the previous sample to
handle discovery of potential new contributing parts of the state space. While the small step adapts
during the rendering, the large step remains the same and does not learn from previous samples.

To address this inefficiency, we combine adaptive emission with MCMC sampling. More specifi-
cally, once we select a Markov chain (i.e. sample a light source group), we use it to generate two 2D
random numbers (𝜉𝑝 , 𝜉𝑑 ) - these would be previously used to sample a photon position on the light
source (group) and its direction. Now, instead of using these directly to generate position/direction,
we first transform (𝜉𝑝 , 𝜉𝑑 ) into (𝜉 ′𝑝 , 𝜉 ′𝑑 ) using our new adaptive emission tree.

Building the emission tree. The emission tree divides the four-dimensional space of positions
and directions. At each tree depth, we divide one of the dimensions into two halves. The split
dimension depends solely on the depth (so at depth = 1 the first dimension is split, at depth = 2
the second dimension is split, and so on). At the rendering start, only the root node exists that
contains the whole 4D space. We then continuously split the nodes after they have accumulated
enough contributing photon paths (64 in the current implementation). We say that a photon path
is accumulated in a node if it contributes to the image and its transformed sample (𝜉 ′𝑝 , 𝜉 ′𝑑 ) lies in
this node. Figure 9 illustrates the building of the emission tree.

Sampling from the emission tree. For sampling purposes, each node also stores its node value.
Given a set of all the photon paths accumulated in a node, node value is computed as the sum over
this set of inverse probabilities 𝑃 (𝜉 ′𝑝 , 𝜉 ′𝑑 ) of generating the final sample (𝜉 ′𝑝 , 𝜉 ′𝑑 ). When sampling
from the emission tree, we start at the root of the tree and scale its child nodes based on their node
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1. 2. 3. 4. 5.

Fig. 9. Here we show the update of the adaptive emission tree, for illustration purpose only in 2D instead of
4D. The tree starts as a single root node (1), when it accumulates enough photon paths (2) it splits in the
middle into two nodes (3). After more photon paths have been accumulated (4), the node with enough photon
paths is split again (5) - this time according to the other dimension. A node always remember its number of
photon paths until it is split.

value. We select the child node in which the random number (𝜉𝑝 , 𝜉𝑑 ) falls and continue until we
reach a leaf node. Once in the leaf node, we generate the final (𝜉 ′𝑝 , 𝜉 ′𝑑 ) uniformly inside this leaf
node. The simplified illustration of the sampling process is shown in Figure 10.

Preventing chain getting stuck. It might happen that the distribution of positions/directions
contains high frequencies (with one or two strong peaks), which may cause the MCMC chain to get
stuck in these peaks. To avoid this and promote better state space exploration, we modify the nodes
in the emission tree to have a given minimum probability of sampling - therefore ensuring each
point in the state space has non-zero probability of being sampled. Furthermore, when accumulating
the contributing photon paths to nodes we slightly jitter their transformed sample (𝜉 ′𝑝 , 𝜉 ′𝑑 ) and
thus we might accumulate them to neighboring node instead. This smoothens the distribution of
positions/directions.
The results of this improvement are shown in Figure 11. We can see that adding the emission

tree further improves the guiding of the photons to the important regions of the scene.

3.3 Photon count estimation
We have further improved how we estimate the ideal number of emitted photons. We start with an
initial value of the emitted photons 𝑁 and once we have rendered the first pass containing photon
lookups, we compute a new photon count estimate.
First, we determine which pixels have a significant contribution from photon lookups. We do

this by comparing the contribution from path tracing and contribution from photon lookups in
each pixel. When photon lookups contribute to at least 1% of the total pixel value, we consider the
contribution significant. We compute an image mask 𝐶 based on this information and blur it to
increase robustness.

3. 4.1.

0 MAX

2.

Fig. 10. Here we show the process of sampling a photon direction and position from the adaptive emission
tree, for illustration purpose only in 2D instead of 4D. The probability of generating new sample in a given
tree node is given by its node value - here displayed in the shades of blue (1). One can assume the nodes are
scaled based on their value (2). Given an initial sample we determine in which scaled node it lies (3). The final
sample is computed by projecting the initial sample into the unscaled node (4).
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a) Without adaptive emission tree (10 min) b) With adaptive emission tree (10 min)

Fig. 11. A same-time comparison of renderings of the glasses scene. The adaptive emission tree makes are
photon guiding more efficient and thus the result of our new caustics solver (b) is less noisy compared to the
old version (a).

For every pixel 𝑝 in the mask 𝐶 , we compute the value of the number of photons actually used
in the pixel’s photon lookups (excluding those discarded by motion blur/dispersion radius) divided
by the number of the pixel’s photon lookups. This ratio 𝑅𝑝 is the number of photons used per one
photon lookup. We further clamp this value to avoid pixels with too many photons to influence
our estimation.
We can then compute the photon count scaling as the ratio of pixels in the mask 𝐶 divided by

the sum of all 𝑅𝑝 . The new number of emitted photons 𝑁 ′ is computed as follows:

𝑁 ′ = 𝑃
𝑁 |𝐶 |∑

𝑝∈𝐶 min (𝑅𝑝 , 𝑃)
(26)

where 𝑃 is the ideal number of photons per photon lookup. We set it by default to 1.5. Figure 12
demonstrates the entire estimation process.
We compare the old photon count estimation and the new estimation in Figure 13. Especially

in the scenes with motion blur or dispersion (as in the Figure 13) the newer algorithm is able to
estimate the photon count better and thus allow faster caustics convergence in the same amount of
time.

1. 2. 3. 4.

Fig. 12. We estimate the number of photons by taking the beauty image (1-left), photon look-up contribution
(1-right) and computing a scaled difference between photon lookups contribution and path tracing contribution
(2), where photon lookups are multiplied by 100. From the contribution difference we compute the mask𝐶 (3).
Finally for every pixel in the mask, we compute the number of photons per photon lookup (4). From this we
can estimate how much more photons we have to trace using Equation 26.
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a) Old solver (8 min) b) New solver (8 min)

Fig. 13. A same-time comparison of renderings of the pool scene with dispersive caustics on the bottom of
the pool. Our new photon count estimation can more accurately predict how many photons are necessary
(especially in scenes with dispersion/motion blur) and thus the rendering has correct bright caustics, while
the old solver underestimates the number of photons and the caustics are not properly resolved.

3.4 Misc
Besides the improvements that influence how fast can our new solver resolve caustics, we have
added other features that allow the users to modify the results as their require.
Repetitions limit. If the Markov chain gets stuck, i.e. it repeats the same sample/photon path

several times, we only store the contribution of given number of photon repetitions. To avoid
energy loss in the whole image, we redistribute the contribution of the over-limit repetitions to the
following generated photon paths. This allows the users to limit the fireflies without darkening the
image.

Caustic multiplier. The users often want to tweak the strength of the caustics without changing
the rest of the scene, for that purpose, we have added a multiplier that changes the intensity of
caustics.
Light/receivers selection. We also allow users to select only a subset of lights in the scene that

will generate caustics. In the same way, they can exclude some objects from receiving caustics.
Therefore, users can easily remove unwanted caustics and focus the solver on the caustics they
want to present in their images.

Render passes. The caustics can be also stored in separate render passes based on whether they
are created by reflection or refraction.

4 VOLUMETRIC CAUSTICS

The first published version of our caustics solver could only resolve caustics on surfaces. However,
caustics in volumes can significantly improve perceived realism in scenes, as demonstrated in
Figure 14. In our latest version, we have added support for volumetric caustics. In this section, we
discuss the changes to our solver needed to support volume caustics.
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a) Pool b) Car

Fig. 14. Example renderings containing volumetric caustics rendered using our caustics solver.

4.1 Beam radiance estimator
Photon lookups in volumes can be performed using various estimators. They differ by their variance
in media with different densities and by their computational overhead [Deng et al. 2019; Jarosz
et al. 2011, 2008] . One can use a single estimator or combine multiple estimators [Křivánek et al.
2014]. For more information on this topic, see other sources [Novák et al. 2018].
From the variety of options, we have chosen a simple beam radiance estimator [Jarosz et al.

2008]. Although other estimators offer lower variance, they have higher complexity and are more
computationally expensive (especially in heterogeneous volumes, since they require recomputing
attenuation along photon paths). The beam radiance estimator works by collecting all volume
photons that are found in the volume at a given distance from a segment of a camera path. Note
that volume photons are the vertices of the photon path that correspond to scattering events inside
a volume. The photons corresponding to scattering events on a surface are ignored by the beam
estimator. Figure 15 demonstrates this estimator.
For surface photon lookups we compute the lookup radius based on ray-differentials [Igehy

1999]. For our beam estimator, we follow the same logic. Instead of cylindrical beams with fixed
radius, we trace conical beams where the radius increases according to the ray differentials. Since
the photon paths are accepted based on the inverse of the squared distance to the camera, using
such conical beams allows us to reduce variance at the regions of the scene further from the camera.
We have also experimented with so-called "short" beams, where we do not collect photons

along the whole segment in the volume, but instead sample a maximum distance based on the
transmittance at which we stop collecting photons. However, the speed up was not sufficient given
the increased variance.

4.2 Volume photons.
We trace volumetric photons together with surface photons, however we store them in a separate
KD-tree, which we have optimized for a conical ray queries. To limit the number of volume photons,
we only store volume photons at the first scatter event inside a volume (and if there has been a
preceding vertex at a glossy surface). After that we terminate the photon path.
For guiding of the photon paths we use a target function that is a maximum of target function

values at each photon generated by a single photon path. For volumetric photons, we use a separate
data structure to store photon visibility. While we use an octree to store surface photons’ visibility,
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1. 2. 3.

Fig. 15. 1. Beam radiance estimator - the photons (red) in the conical beam shot from the camera are
considered in the estimator. 2. To upgrade the photon visibility voxel grid we consider the segment of the
beam between the first and the last contributing photon. 3. Voxel cells intersecting the segment of the beam
are marked - volume photons in these voxels will have non-zero target function.

we have found out that such a structure is inefficient for volumetric photons. The issue is updating
the structure based on conical queries, which is quite computationally expensive. Therefore, we
have decided to use a voxel grid instead. Figure 15 shows how we update the volumetric photons’
visibility. As in the previous version of our caustics solver, we compute the target function value
for each photon by multiplying the photon visibility with the inverse of the squared distance from
the camera.

5 SUMMARY AND FUTUREWORK

In this part of the course we have presented our solution to resolving caustics in Corona renderer.
Our solver is based on photon lookups, since we have found it to be more efficient than path guiding.
Since our initial implementation presented at EGSR [Šik and Křivánek 2019a], we have improved
our caustics solver by

• Improving stratification over light sources by introducing multiple chains.
• Adding adaptive emission on top of the MCMC guiding of photons.
• Making a more robust photon count estimation.
• Adding support for volumetric caustics.

Although we have managed to significantly improve our caustics solver, it still has few limitations
that we would like to address in the future.
Render regions. Our users often use render regions, rendering just part of the image. This does

not work well with our caustics solver, which usually needs to trace many photons even for small
regions containing caustics. While we try to amortize the cost by reusing the same set of photons
for multiple rendering passes, rendering regions with caustics is still inefficient.
Non-uniform convergence. While our guiding can deliver photons to the important regions in

the scene, some caustics still receive more photons than others and thus converge faster. We have
experimented with modifying our target function to include the information about the number
of photons per merge lookup (see Section 3.3), however, so far we did not manage to improve the
uniformness.

Low-density volumes.Our volumetric estimator is quite efficient in handling volumeswithmedium
or higher density; however, its efficiency drops in sparse volumes. We would like to try combining
it with different estimators to improve the solver efficiency.
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