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In this document, we present further material for our paper, “Spectral and

Decomposition Tracking for Rendering Heterogeneous Volumes”:

• in Section 1.1, we present an extended proof of the main math-

ematical mechanism our analog decomposition tracking is built

upon,

• in Section 1.2, we prove that the maximum-based probabilities cap

the local collision weight,

• in Section 1.3, we prove our claim that geometric growth of the

throughput can be avoided when using spectral tracking,

• in Section 2.1, we provide a number of plots and empirical results

generated during our investigation of and experiments with de-

composition tracking, and we discuss the meaning of these results,

• in Section 2.2, we provide an additional spectral tracking example

using a special absorbing volume,

• in Section 2.3, we show the e�ects of non-bounding free-path-

sampling coe�cients on renders, and

• in Section 2.4 we compare the two history-aware spectral-tracking

probability schemes on a volume with an albedo of 1.

• in Section 2.5 we provide additional comparisons of delta and

decomposition tracking performance for various octree depths.

1 PROOFS AND DERIVATIONS

1.1 Extended Proof of Analog Decomposition Tracking
We present a proof that the minimum of the distance samples drawn

from two components of a volume is distributed identically to the

distance samples drawn directly from their sum, the original vol-

ume. This proof is essentially an expanded version of the proof of

Theorem 1 in Section 4.1 of the main paper, and it uses the same

notation. Speci�cally, this proof shows that a random variable C
representing the distance samples from the original volume has

the same CDF as the minimum D of two random variables A and B
representing the distance samples from the component volumes.

Proof. We begin by deriving the CDF of the minimum of two

independent random variables:

FD (t ) = P(D ≤ t )

= P(min(A,B) ≤ t )

= P(A ≤ t ∨ B ≤ t )

= 1 − P(A > t ∧ B > t )

= 1 − P(A > t )P (B > t )

= 1 − (1 − P(A ≤ t )) (1 − P(B ≤ t ))

= 1 − (1 − P(A ≤ t ) − P(B ≤ t ) + P(A ≤ t )P(B ≤ t ))

= P(A ≤ t ) + P(B ≤ t ) − P(A ≤ t )P(B ≤ t )

= FA (t ) + FB (t ) − FA (t )FB (t ). (1)

Next, we incorporate the distance CDFs and simplify:

FD (t ) = [1 −TA (t )] + [1 −TB (t )] − [1 −TA (t )] [1 −TB (t )]

= 2 −TA (t ) −TB (t ) − [1 −TA (t ) −TB (t ) +TA (t )TB (t )]

= 2 −TA (t ) −TB (t ) − 1 +TA (t ) +TB (t ) −TA (t )TB (t )

= 1 −TA (t )TB (t ). (2)

Finally, we use the de�nition of TX (t ) and simplify:

FD (t ) = 1 − exp

(
−

∫ t

0

µA (xs )ds
)

exp

(
−

∫ t

0

µB (xs )ds
)

= 1 − exp

(
−

∫ t

0

µA (xs )ds + −
∫ t

0

µB (xs )ds
)

= 1 − exp

(
−

∫ t

0

µA (xs ) + µB (xs )ds
)

= 1 − exp

(
−

∫ t

0

µC (xs )ds
)

= FC (t ). (3)

From the above, we can see that FD (t ) = FC (t ). �

1.2 Maximum Collision Weight of Spectral Tracking
In this section we show that, when using the maximum-based proba-

bility scheme for spectral tracking introduced in Section 5.1.1 of the

main paper, the maximum value of the local collision weight over

all of the channels never exceeds the number of collision types, i.e.

3 for media with absorptive, scattering, and null-collision events. It

could be shown analogously that the maximum value never exceeds

2 if the medium is non-emissive.

Theorem 1. Let µ? : ? ∈ {a, s,n} be non-negative collision coef-
�cients, where a, s , and n stand for absorption, scattering, and null-
collision, respectively. If P? is de�ned using the (non-history-aware)
maximum-based scheme described in Section 5.1 of the main paper,
then

max

λ
(w?(x, λ)) ≤ 3. (4)

Proof. To reason about the left side of Equation 4, we use the

shorthand

w = max

λ
(w?(x, λ)) . (5)

First, we expand w? using its de�nition:

w = max

λ

(
µ?(x, λ)
µ̄ (x)P?(x)

)
, (6)



and similarly for P?:

w = max

λ

*........
,

µ?(x, λ)

µ̄ (x)
max

λд
(µ? (x,λд ))∑

i∈{a,s,n}
max

λд
(µi (x,λд ))

+////////
-

= max

λ

*...
,

µ?(x, λ)
µ̄ (x)

∑
i ∈{a,s,n }

max

λд

(
µi (x, λд )

)
max

λд

(
µ?(x, λд )

) +///
-

. (7)

Rearranging terms yields

w = max

λ

*...
,

µ?(x, λ)

max

λд

(
µ?(x, λд )

)
∑

i ∈{a,s,n }
max

λд

(
µi (x, λд )

)
µ̄ (x)

+///
-

. (8)

Our assumption that all coe�cients are non-negative implies that

the free-path-sampling coe�cient is a majorant. This means that

the maximum value of any wavelength of any collision coe�cient

is lower or equal to the free-path-sampling coe�cient. Hence

w ≤ max

λ

*...
,

µ?(x, λ)

max

λд

(
µ?(x, λд )

)
∑

i ∈{a,s,n }
µ̄ (x)

µ̄ (x)

+///
-

, (9)

which, given that all coe�cients are non-negative, simpli�es to

w ≤ 3 max

λ

*...
,

µ?(x, λ)

max

λд

(
µ?(x, λд )

) +///
-

. (10)

The maximum of a vector of values divided by the maximum value

of that vector equals to 1, hence

w ≤ 3 (11)

concluding the proof. �

1.3 Path Throughput of Spectral Tracking
In this section, we prove by mathematical induction that, when using

the history-aware average-based probability scheme for spectral

tracking introduced in Section 5.1.2 of the main paper, the sum

of the throughputs over all of the channels is always equal to the

number of channels Nλ . This property also implies that the average

of the throughputs over all of the channels is always equal to 1, and

that the maximum throughput for any one channel is Nλ .

Theorem 2. Let µ? : ? ∈ {a, s,n} be non-negative collision coef-
�cients, where a, s , and n stand for absorption, scattering, and null-
collision, respectively. If P? is de�ned using the history-aware average-
based scheme described in Section 5.1.2 of the main paper, then the
following statement S (n):

Nλ∑
h=1

w (Xn , λh ) = Nλ , (12)

holds for all natural numbers n ∈ N0.

Proof. We prove the above theorem by mathematical induction.

Base case: Because

w (X0, λ) ≡ 1, (13)

S (0) holds:

Nλ∑
h=1

w (X0, λh ) =

Nλ∑
h=1

1 = Nλ . (14)

Inductive step: Assuming that S (j ) holds, we show that S (j + 1)
also holds, that is:

Nλ∑
h=1

w (Xj+1, λh ) = Nλ . (15)

We �rst express the path throughput w (Xj+1, λh ) as a product of

throughput of path pre�x Xj and the local collision weight at xj+1.

We use w̃ as a shorthand for the left-hand side of Equation (12) and

x+ as a shorthand for xj+1 for clarity:

w̃ =

Nλ∑
h=1

[
w (Xj , λh )w?(x+, λh )

]
. (16)

The de�nition of w? can be substituted in to obtain

w̃ =

Nλ∑
h=1

[
w (Xj , λh )

µ?(x+, λh )
µ̄ (x+)P?(x+)

]
, (17)

and then the de�nition of P? can be substituted in to obtain

w̃ =
Nλ∑
h=1



w (Xj , λh )
µ? (x+, λh )

µ̄ (x+)
avg

λд
(µ? (x+,λд )w (Xj ,λд ))

∑
i∈{a,s,n}


avg

λд
(µi (x+,λд )w (Xj ,λд ))





=

Nλ∑
h=1



w (Xj , λh )
µ? (x+, λh )
µ̄ (x+)

∑
i∈{a,s,n}


avg

λд

(
µi (x+, λд )w (Xj , λд )

)
avg

λд

(
µ? (x+, λд )w (Xj , λд )

)


.

(18)

Next, the avg function can be replaced with its de�nition, yielding

w̃ =
Nλ∑
h=1



w (Xj , λh )
µ? (x+, λh )
µ̄ (x+ )

∑
i∈{a,s,n}

[
1

Nλ

∑Nλ
д=1

[
µi (x+, λд )w (Xj , λд )

] ]

1

Nλ

∑Nλ
д=1

[
µ? (x+, λд )w (Xj , λд )

]



.

(19)

We then extract 1/Nλ , which does not depend on i or д. The 1/Nλ
terms can then be canceled. Next, we can switch the nested summa-

tions in preparation for later steps:

w̃ =
Nλ∑
h=1



w (Xj , λh )
µ? (x+, λh )
µ̄ (x+ )

��
1

Nλ

∑Nλ
д=1

[ ∑
i∈{a,s,n}

[
µi (x+, λд )w (Xj , λд )

] ]

��
1

Nλ

∑Nλ
д=1

[
µ? (x+, λд )w (Xj , λд )

]


(20)

Because we use one µ̄ for all λ, we know that∑
i ∈{a,s,n }

µi (x, λ) ≡ µa (x, λ) + µs (x, λ) + µn (x, λ) ≡ µ̄ (x), (21)



and we know that the path throughput w (Xj , λд ) does not depend

on i , so the inner sum can be eliminated. The µ̄ can then be extracted

from the remaining sum; then we cancel the µ̄ terms:

w̃ =
Nλ∑
h=1



w (Xj , λh )
µ? (x+, λh )
µ̄ (x+ )

∑Nλ
д=1

[
w (Xj , λд )

( ∑
i∈{a,s,n}

µi (x+, λд )
)]

∑Nλ
д=1

[
µ? (x+, λд )w (Xj , λд )

]



=

Nλ∑
h=1


w (Xj , λh )

µ? (x+, λh )
��µ̄ (x+ )

��µ̄ (x+ )
∑Nλ
д=1

w (Xj , λд )∑Nλ
д=1

[
µ? (x+, λд )w (Xj , λд )

]

. (22)

Using the induction hypothesis that S (j ) holds, the remaining sum

in the numerator can be replaced with Nλ , yielding

w̃ =

Nλ∑
h=1


w (Xj , λh )µ?(x+, λh )

Nλ∑Nλ
д=1

[
µ?(x+, λд )w (Xj , λд )

]

.

(23)

Since Nλ and the inner summation in the denominator are both

independent of h, we can extract them, producing a fraction where

we can cancel the numerator and denominator to produce Nλ :

w̃ =

Nλ∑
h=1

[
w (Xj , λh )µ?(x+, λh )

] Nλ∑Nλ
д=1

[
µ?(x+, λд )w (Xj , λд )

]

= Nλ(
((((

(((
(((∑Nλ

h=1

[
µ?(x+, λh )w (Xj , λh )

]

((((
((((

(((∑Nλ
д=1

[
µ?(x+, λд )w (Xj , λд )

]

= Nλ , (24)

thereby showing that S (j + 1) also holds. �

2 ADDITIONAL ANALYSIS AND DETAILS

2.1 Control Extinction in Decomposition Tracking
In this section, we provide more results from our experiments with

and analysis of decomposition tracking described in Section 4.3 of

the main paper. Figure 1 is an extended version of Figure 7 in the

main paper. Figures 2 and 3 together are an extended version of

Figure 8 in the main paper.

2.2 Additional Spectral Tracker Comparison
Figure 4 shows a special case and how it can be handled with spec-

tral and decomposition tracking. In particular, the �gure shows a

comparison of �ve multi-channel trackers on a volume with absorp-

tion for which the non-history-aware maximum-based probabilities

with the reduced-termination-rates adjustment work well. The vol-

ume has spectrally varying absorption and scattering coe�cients

that are computed as the product of a spatially varying density and

the vector multipliers (0.2, 0.3, 0.6) and (1.1, 1.2, 1.0), respectively.

Figure 5 shows all of the collision coe�cients for a part of the vol-

ume with full density and a part of the volume with half density.

The amount of absorption in this test is set such that the scattering

and null probabilities can always be set to bound the maximum

proportions of scattering and null particles, respectively. This al-

lows the maximum-based probability scheme to keep local collision

weights, and thus path throughputs, at or below 1 at all times. To

ensure fair and straightforward comparisons, we do not employ

sample splitting or Russian roulette in these tests.

This con�guration also allows decomposition to be implemented

in a way that does not change results apart from decreasing the

number of lookups. Variance can increase somewhat when decom-

position splits a volume into achromatic and chromatic parts, which

is the straightforward solution described in Section 5.2 of the main

paper; however, if something is known about the properties of the

volume in advance, the decomposition can be more optimally tai-

lored to the situation. Because the albedo is constant in the volume

of Figure 4, the albedo and collision probabilities can be set analo-

gously for the control and residual components when decomposi-

tion is applied, ensuring that the decomposition does not a�ect the

variance. Of the trackers compared in this �gure, the decomposed

spectral tracker using the maximum-based probability scheme has

the lowest overall variance, the lowest maximum path throughput,

and the lowest number of spatially varying density lookups.

2.3 E�ects of Non-Bounding Free-path-sampling
Coe�icients on Renders

Figure 6 shows a selection of the renders that were used to gen-

erate the data for the plots in Figure 13 of the main paper, which

illustrates how the variance explodes with non-bounding free-path-

sampling coe�cients. The sequences of renders for this analysis use

the history-aware average-based probabilities for maximum robust-

ness to high albedos. While absorption sti�es the explosion of the

variance slightly, it does not prevent it. When computing the RMSEs

and LTUVs, the maximum absolute pixel value was clamped to 65504

as if the images were encoded using standard 16-bit �oating-point

numbers; without this clamping, the RMSEs and LTUVs increase

even more quickly due to occasional extreme outliers.

2.4 Comparison of History-aware Probability Schemes
Figure 7 compares the history-based and average-based probabilities

on the non-absorbing color explosion, illustrating that the latter is

robust to high albedos. This is an expanded version of Figure 14 in

the main paper.

2.5 Additional Octree Depth Comparisons
In this section, we provide additional comparisons of delta and de-

composition tracking performance for various octree depths. In

Table 2 of the main paper, we provide a comparison using the opti-

cally thicker cloud from Figure 11 of the main paper. In addition to

reproducing that table here as Table 2, we also provide in Table 1

the same comparison using the optically thinner cloud from Figure

11 of the main paper. Just like in the main paper, the timings were

measured on a dual 12-core 2.50 GHz Intel Xeon E5-2680 v3 but we

report them in single-core equivalents.
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Figure 1. For the media in columns (a) and (c) we visualize the average relative cost ρ (purple curve) of weighted decomposition tracking w.r.t. delta tracking,
the variance of path throughput until the first real collision (orange curve), and their product (black curve).
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(a) Medium (b) Absolute cost Ndcmp (c) Relative cost ρ (d) Mean of w (X) (e) Variance of w (X)

Figure 2. For the media in column (a), we visualize the the absolute cost of our weighted decomposition tracking in column (b), the relative cost of our weighted
decomposition tracking w.r.t. delta tracking (ρ = Ndcmp/Ndelta) in column (c), the mean path throughput w (X) at the first real collision (including the local
collision weight) in column (d), and the variance of w (X) in column (e).
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(a) Medium (b) Absolute cost Ndcmp (c) Relative cost ρ (d) Mean of w (X) (e) Variance of w (X)

Figure 3. Continuation of Figure 2. For the media in column (a), we visualize the the absolute cost of our weighted decomposition tracking in column (b), the
relative cost of our weighted decomposition tracking w.r.t. delta tracking (ρ = Ndcmp/Ndelta) in column (c), the mean path throughput w (X) at the first real
collision (including the local collision weight) in column (d), and the variance of w (X) in column (e).
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Figure 4. Comparison of naive delta tracking (ND), free-path-sampling residual ratio tracking (FPSRR), spectral tracking with average probability scheme (SA),
spectral tracking with maximum probability scheme (SM), and spectral tracking with maximum probability scheme and decomposition (SMD) in a canonical
scene, where light paths enter a heterogeneous RGB medium (a). We visualize the mean cost (b), the maximum path throughput (c), and the variance of the
RGB path throughput (d); all statistics are w.r.t. the first real collision with the medium or transmission through it. The images in column (e) show the noise in
the path throughput—each pixel was obtained by averaging 2 instances of the tracker. Note how tracking all channels at once reduces the color noise. This
comes at the cost of computing 3× more weights; however, since most heterogeneous-volume renderers are memory bound, arithmetic operations are rarely
the bo�leneck in practice.
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Figure 5. Collision coe�icients for two points in the volume of Figure 4, showing the absorption “gap” between the sca�ering and null coe�icients and the
probability se�ings used by the history-aware average-based probability scheme.
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Figure 6. A few of the renders that were used in the non-bounding free-path-sampling coe�icient analysis. The volume in the first column exhibits absorption,
the volume in the second column is non-absorptive. Both volumes have the same colored extinction coe�icients. The exacerbated noise in certain regions is
caused by a mixture of positive and negative fireflies, all of very high magnitude.
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Figure 7. Approximately equal-time comparison of two of the spectral tracking probability schemes presented in the main paper on a volume without
absorption, illustrating the ability of the history-aware average-based probabilities to bound the throughput. The images were rendered with 16 spp, and the
exposure was reduced to be�er show the fireflies. The free-path-sampling coe�icient does do not perfectly bound the extinction in this case, resulting in a few
fireflies in the reference image.



Table 1. Comparisons of delta and decomposition tracking performance
for various octree depths. The scene is the thin cloud from Figure 11 in the
main paper, rendered with 32 spp. The last two rows report the non-lookup
tracker time.

Octree depth 1 4 8 16

Octree leaves visited 0.12 G 0.31 G 1.32 G 2.02 G

Lookup num. (Delta) 0.74 G 0.24 G 0.080 G 0.074 G

Lookup num. (Decomp) 0.74 G 0.23 G 0.032 G 0.022 G

Lookup time (Delta) 201 s 88 s 44 s 43 s

Lookup time (Decomp) 201 s 87 s 26 s 20 s

Octree time (Delta) 3.58 s 40 s 216 s 365 s

Octree time (Decomp) 3.58 s 42 s 253 s 414 s

Tracker time (Delta) 49 s 30 s 78 s 115 s

Tracker time (Decomp) 49 s 31 s 98 s 142 s

Table 2. Comparisons of delta and decomposition tracking performance for
various octree depths. The scene is the thick cloud from Figure 11 in the
main paper, rendered with 32 spp. The last two rows report the non-lookup
tracker time.

Octree depth 1 4 8 16

Octree leaves visited 1.86 G 2.06 G 3.11 G 4.05 G

Lookup num. (Delta) 106 G 22.8 G 2.96 G 2.49 G

Lookup num. (Decomp) 106 G 22.6 G 1.71 G 1.03 G

Lookup time (Delta) 20065 s 5785 s 1030 s 876 s

Lookup time (Decomp) 20065 s 5472 s 536 s 336 s

Octree time (Delta) 64 s 315 s 734 s 916 s

Octree time (Decomp) 64 s 319 s 714 s 918 s

Tracker time (Delta) 6108 s 1389 s 299 s 321 s

Tracker time (Decomp) 6108 s 1379 s 280 s 300 s
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