
TECHNIQUES USED IN THE GEM CODE FOR
MONTE CARLO NEUTRONICS CALCULATIONS IN

REACTORS AND OTHER SYSTEMS OF COMPLEX GEOMETRY

E. R. Woodcock, T. Murphy,
P. J. Hem.m.ing s, and T. C. Longwo rth

United Kingdom. Atom.ic Energy Authority
Risley, Warrington, Lancs., England
(Paper presented by E. R. Woodcock)

I. Introduction

The Monte Carlo technique has becom.e a practicable m.ethod for the
solution of m.any neutronics problem.s through the developm.ent of fast com.-
puting m.achines, which are well suited for the large num.ber of sim.ple re-
petitive calculations that are required. The m.ethod has the attraction that
it is, in principle, capable of treating any com.plexities in geom.etry and nu-
clear data without approxim.ation. Such an ideal is not easily achieved. On
the one hand, m.eans of feeding in a large am.ount of geometrical and nuclear
data need to be devised. On the other, this m.ust be handled efficiently dur-
ing the calculation, becaus e a large num.ber of neutron histories m.ust be
followed in order to obtain acceptable statistical accuracy.

Nevertheless, a num.ber of codes have been and are being developed
to exploit the advantages of the Monte Carlo technique. The GEM Code was
designed initially to study criticality- safety problem.s in chemical plants,
and a prim.ary objective was to use nuclear data in as fine a detail as pos-
sible. Its geom.etrical capabilities were extended in 1962 to carry out a
survey(I) on behalf of the International Atom.ic Energy Agency of the factors
affecting the nuclear safety of arrays of transport containers carrying fis-
sile m.aterials. Developm.ents since that tim.e have enabled virtually all
geom.etrical restrictions to be rem.oved. The resulting program has proved
versatile enough to m.ake neutronic calculations for a com.plete reactor, in-
corporating all the significant structural features.

In the description which follows, it is assum.ed that the reader is
fam.iliar with the basic principles of Monte Carlo tracking, such as de-
scribed, for exam.ple, by Parker and Woodcock. (2)

2. Basic Philosophy

The prim.ary aim. of the program. is to calculate the overall reactiv-
ity of a system. of any geom.etry. A num.ber of possible param.eters can be
used as a m.easure of reactivity. Som.e of these have been discussed at
length by Woodcock,(3) who concluded that the m.ost useful were the m.ulti-
plication factor per fission generation, keff' and the quantity MR, where M
is the surface m.ultiplication of an inner portion of the system. called the
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II core II and R is the albedo of the remainder, which acts as a reflector. In
GEM, the quantity MR has been chosen as fundamental and keff is treated as
a derived parameter.

With minor exceptions neutron tracking is carried out by direct sim-
ulation. It was considered that the advantage to be gained in the type of prob-
lem to be tackled by GEM, from any currently suggested variance-reducing
techniques did not merit the additional complexity of programming and the
careful analysis required to ensure that no bias was introduced. Experience
since making this decision has, so far, given no grounds for suggesting that
it was an incorrect one.

A first essential in designing a Monte Carlo neutronics calculation
is to ensure that the neutron tracking is as efficient as possible. Thus, the
parameters to be calculated should achieve their eigenvalues quickly and
should then have a small statistical variance. The time spent in tracking
neutrons in any particular part of the system should be in proportion to the
importance of that part in determining the values of the desired parameters.
In GEM a deliberate attempt has been made to achieve this efficiency by
adopting the following tracking cycle.

2. I Tr acking Cycle

As a first step in the specification, a II neutronically important
boundary II B is chosen, and tracking proceeds by stages beginning and
ending at this boundary. At the beginning of a stage a specified number of
neutrons, N, enter the core across the boundary B. They and their de-
scendants are followed through the system until they either escape, are
captured, or reach the boundary B again, travelling in a direction to re-
enter the core. This is the end of the stage. If during this tracking, No
neutrons crossed the boundary B travelling outwards and N' returned to
the core, the ratios No/N and N'/No are estimates of the surface multipli-
cation of the core and the albedo of the reflector, respectively. The N neu-
trons required for the next stage are chosen at random from the N'
re-enters.

When sufficient stages have been completed, the measure of re-
activity MR is obtained as the mean ratio N'/N, being unity for a critical
system and greater than unity for a supercritical system. If boundary B is
well chosen, these parameters quickly settle to their equilibrium values pro-
vided a suitable distribution is us ed for the N neutrons starting the fir st
stage. Such a distribution is usually obtained by running a preliminary stage
started from fis sion neutrons at the centre of the core, on the argument that
any neutron entering the core across boundary B must have originated from
a fission in the core.
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2.2 Choice of Boundary B

The specification of the boundary B is one of the vital features
affecting the efficiency of the GEM technique. In designating this boundary,
the three considerations of quick settling, small errors, and sampling im-
portance must be borne in mind. In practice, it is difficult to plan or achieve
the ideal precisely. Selection of boundary B can seldom be completely di-
vorced from geometrical detail, although considerable ingenuity may be ex-
ercised. Moreover, compromise is necessary, since some of the desirable
conditions conflict with each other. A mathematical analysis of optimum
conditions has not yet been developed, and the following guidance as to choice
of boundary B is based on experience. A poor choice usually reveals itself
by creating difficulties in obtaining satisfactory answers.

One good choice, as it will achieve rapid settling, is to make
boundary B surround the main bulk of fis sile material as clos ely as pos-
sible. But large statistical errors will be encountered unless the core mul-
tiplication is small, generally less than 2. This is discussed more fully in
Section 4.2 below. For a larger core multiplication it is advisable to choose
some surface inside the fissile material. If an air gap exists between the
core and reflecting material, the outer surface of the core is a better bound-
ary B than the inside of the reflector, because then all initial neutrons for
each stage will enter the core directly, satisfying the importance criteria.

Frequently, and particularly with symmetrical or near symmet-
rical systems, it is a good plan to include a central plane with mirror re-
flections as part of boundary B. The neutrons tracked across this plane
will settle to an eigendistribution, exhibiting the proper relative importance,
except for outer parts of the reflector, which may be oversampled.

Oversampling, such as may occur here or in other cases, In
the outer parts of a thick reflector can be avoided by use of a filter. A
filter surface is defined so that only a specified proportion of the neutrons
reaching it in the outward direction are tracked beyond it and the sample
size is restored when neutrons arrive back at the filter.

Careful choice of boundary B and the judicious use of filters
enable the tracking to be so arranged that the importance criteria are ade-
quately satisfied.

3. Criticality Parameters - Calculation of keff

For the usual cas e in which the boundary B divides the system into
a core and reflector, the criticality parameter MR is determined from the
neutron counts. To obtain keff' the direct method is to repeat the calcula-
tion with the mean number of neutrons per fission, v, divided by k. In this
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way M and R are obtained as functions of k and, by interpolation, both 11M
and R, being linear in k over a small range, the value of k for which 11M =
R can be obtained. This value of k is-equal to the required keff.

Alternatively, a close estimate of keff can be obtained directly from
one calculation in the following way.

Of the S neutrons which enter the core, as sume that a fraction 10
escape and a fraction fo cause a fission. Of the V o neutrons which arise on
average from each of these fissions, assume that a fraction 11 escape and
a fraction f 1 cause a further (second-generation) fission.

In general, of the Vi-l neutrons arising from an ith generation fis-
sion assume that a fraction Ii escape a fraction Ii cause a further
sion. Then the quantities F and MB may be defined by the following
relations:

.. -,

(1)

where

(2)

Here F is the total number of fis sion children produced in the sample and
MBi is the total number of neutrons leaving the core as the result of one
fission neutron born in the i th generation.

Also, the surface multiplication M can be expressed as

(3)

Henc e, by definition of keff,

(4)

Algebraic manipulation of Eqs. (1) to (4) leads to

(5)

where <P is a function which is always finite and vanishes if Ii = 1, fi = f,
for all i > 0, and vi = V for all i.
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Hence, it follows that the equation

S(M - 10)[M - (I/R)]
= 1 + MBF[(l/R) - 10]

(6)

gives the"true value when keff is unity or near unity and gives a good ap-
proximation elsewhere. Furthermore, this keff is a perfectly valid mea-
sure of reactivity and can for all practical applications be used in place
of the more usually defined keff.

The quantities used in Eq. (6) are all readily derived from counts
printed at the end of the calculation, and the keff given in the print out is
obtained from the use of this formula. There is a point about the inter-
pretation of Eq. (6). The fundamental definition of keff is the multiplica-
tion in a cycle that starts and ends in a fis sion. The keff from Eq. (6)
refers to a cycle that starts and ends in a fis sion in the core. These rep-
resent slightly different definitions for systems which have fis sions in the
reflector.

4. Statistics

The purpos e of the tracking technique used in a Monte Carlo code
is to obtain neutron samples representative of the eigendistribution of the
steady- state system, and then to estimate some numerical index of reac-
tivity. Due to the probabilistic nature of the processes involved, some
statistical error is associated with the reactivity. It is necessary to ob-
tain an estimate of the size of this uncertainty. Furthermore, since the
eigendistribution is unknown at the outset, a statistical analysis is needed
to ensure that the desired steady-state distribution has been generated and
is being sampled.

4.1 Tests for Settling

The GEM procedure for the tracking cycle, whereby the" enter"
neutrons for one stage are obtained from the" re-enter" neutrons of the
previous stage, has been designed as an efficient way of generating an eigen-
distribution. Two difficulties may arise. Firstly, the settling may be so
slow that the early stages may not yield samples appropriate to the neutron
eigendistribution on boundary B. Secondly, even if settling is rapid, suc-
ces sive stages may not lead to statistically independent estimates.

An analysis of variance has been applied to a number of GEM
runs consisting of identical fissile cores in near-identical reflectors, so
that the core surface multiplications were known to be the same. This in-
dicated that any differences between the estimated core multiplications
were due to chance variation; these runs had settled sufficiently to allow
that parameter to be accurately and properly estimated.
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Any interdependence froITl one stage to the next or following
stages is likely to produce an oscillation or a gradual drift in the paraITl-
eter to be estiITlated as the eigendistribution is reached. Under these cir-
CUITlstances the appropriate statistical test is the ITlean-square successive-
difference test. (4) Alternatively, an analysis of variance ITlay be applied to
subsets of a nUITlber of stages. No evidence of interdependence has yet been
found.

The conclusions drawn froITl these studies are that neutrons
settle rapidly to the eigendistribution and yield proper and independent ran-
dOITl saITlples froITl this distribution. It follows that the best estiITlate of a
criticality paraITleter is that obtained by totalling all the various neutron
counts over all the stage s cOITlpleted in the particular run.

4.2 Calculation of Statistical Error

The paraITleter MR ITleasures the return of neutrons to bound-
ary B. The aiITl of GEM is to estiITlate its average value. It can be shown
that the frequency distribution of the "re-enters" arising froITl a single
"enter" neutron on boundary B will have finite ITlean and variance. Hence,
it follows froITl the Central LiITlit TheoreITl that the ITlean MR froITl saITlples
of N neutrons will have a statistical distribution which tends to NorITlal as
N tends to infinity. In such cases the calculation of standard error is
straightforward.

The size of saITlple required to achieve sufficient NorITlality
has been investigated, but no clear answer has eITlerged. SOITle typical
histograITls of MR are shown in Fig. 1 for two cases, one with a core sur-
face ITlultiplication of 1.7 and the other of 3.9. For the forITler the distri-
bution froITl 200 neutrons is clearly NorITlal, and that froITl 100 neutrons is
adequately so, In the second case, saITlples of 500 neutrons are required
before the skewness diITlinishes. These histograITls reveal the expected
and generally observed phenoITlenon that for a given nUITlber of neutrons in
the saITlple, the distribution of MR becoITles wider and ITlore skew as the
core surfac e ITlultiplication inc reas e s.

Goodness of fit, skewness, and kurtosis tests have been applied
to a nUITlber of such histograITls. They indicate that saITlples of 100 neutrons
per stage, which is a convenient nUITlber for the cOITlputer, are usually ade-
quately norITlal provided that the core surface ITlultiplication is below 2.
Only slight error is introduced here, and this is an overestiITlate of the true
standard error. A confidence interval for MR ITlay be obtained froITl NorITlal-
distribution theory.
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Fig. 1. Frequency Histograms of Distributions of MR
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It would appear that a similar ar gument could be developed for
keff. However, experience has shown that the frequency diagrams of keff
exhibit considerable more skewness than those of MR, making it difficult to
calculate the statistical error directly. It is easier, therefore, to consider
k eff as a parameter derived from MR. Figure 2 illustrates the relationship
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Fig. 2. Plot of keff against MR for Single Stages of 100 Neutrons
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typically obtained between keff and MR from single stages of a GEM run.
These results were taken from the example discussed in Section 10,4 below.
Any curve drawn for this relationship must pas s through the point (1,1) and
also through the mean point obtained by totalling all the counts. It seems
reasonable to approximate to the correct curve by the straight line joining
these points. Consequently, the relationship between the standard error of
keff and that of MR may be derived from Eq. (6) as

standard error of keff S(M - £0)= RMBF[(l/R) _ £0] (standard error on MR).
(9)

5. Spectra and Flux Distribution

It can readily be deduced that when a steady- state neutron distribu-
tion has been achieved, whether in a critical system or in a subcritical sys-
tem with an imposed neutron source, the flux of neutrons in any energy band
in a given region is proportional to the total path length of neutrons in the
region in that energy band divided by the volume of the region. In a critical
system the factor of proportionality is immaterial, but if a source is present
from which a total of N neutrons are started, the flux in neutrons per square
centimetre per second will be equal to

Total path length of neutrons in centimeters
Volume of region in cubic centimeters

for a source of N neutrons per second.

Once the flux as a function of neutron energy is obtained, any desired
reaction rate can be obtained as the sum over energy of the product of the
flux with the macroscopic cross section for that reaction.

Fluxes and reaction rates are calculated in the GEM program in two
ways. There is an option to calculate, during the tracking, the total path
length in each region* in any specified energy groups. These path lengths
are then multiplied by an arbitrary factor for each region, usually the in-
verse volume, and the results printed out.

Alternatively, the individual path lengths and corresponding neutron
energies in specified regions can be read out on tape and subsequently ana-
lyzed by a subsidiary program, OPAL, which calculates both spectra and
reaction rates. This latter method takes more machine time but will give

*The word II region ll is here used in the special sense which is described
below in Section 9.
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the more accurate reaction rates, as it uses the precise energy of each
neutron recorded and interpolates for the cross section at that energy.

6. External Source and Gamma- ray Problems

There is an option in GEM to specify an external source of neutrons
which is usually, though not neces sarily, specified as neutrons from a given
spectrum and angular distribution emitted uniformly from a specified area
of a certain surface. In this case the program will make a random choice
of the variables to determine the coordinates of the start neutrons.

By use of the external- source option, with photon interaction data
and scatter laws, calculations can be made for gamma- ray transmis sions.
However, since the tracking is basically by direct simulation, this method
is suitable only for thin shields. For attenuations exceeding 0- 3 , it is
better to use a program specifically designed for this type of calculation,
such as UNC-SAM.(5)

7. Tracking Methods

The program is divided into two main parts: TRACK and CRASH.
Of these, TRACK deals with the geometry of the system and the general
organization, whereas CRASH deals with the nuclear data. In this section
the flow pattern of the tracking is outlined. The following two sections
give some detail of the manipulation of nuclear and geometrical data.

Each neutron is represented by a set of coordinates, defining posi-
tion, direction of motion, energy, and history. These require eight 36-bit
words to store.

At the start of each stage, the coordinates of a specified number of
inward-moving neutrons, usually 100, on boundary B are available in the
Birth Store. TRACK selects the first of these neutrons, and calls upon
CRASH to calculate the mean free path and then, by a random selection, a
path length, assuming the neutron remains in the same material. TRACK
then compares this path length with the distance the neutron has to travel
to reach the next interface. If the latter is the shorter, TRACK move s the
neutron forward to that interface and starts the process again with the ma-
terial on the other side. If the path length is the shorter, TRACK moves
the neutron forward by this distance and calls upon CRASH to determine
what happens at this collision point. CRASH will find, by a series of ran-
dom selections, first the atomic nucleus involved, then the type of inter-
action and, finally, the directions and lethargies of the emergent neutrons.
TRACK will then repeat the process with one of these neutrons, any others
being stored at the top of the Birth Store to be picked up later. When, how-
ever, a neutron reaches boundary B again, moving inwards, it is placed in
the Delay Store, and the next neutron taken from the Birth Store.
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The stage ends when all the remalnmg neutrons are in the Delay
Store. To start the next stage the specified number of neutrons are chosen
at random from the Delay Store and transferred to the Birth Store. If there
are insufficient neutrons in the Delay Store, some of them are chosen twice.
During this whole process, counts are kept of all boundary crossings and of
all neutron reactions and the various criticality parameters calculated.

8. Nuclear Data Routines - CRASH

The purpose of CRASH is to sample the Nuclear Data when requested
by TRACK to provide a path length or to find the numbers, directions, and
lethargies of neutrons emerging from a collision. The path length in a given
material is derived from the total cross section and the parameters of emer-
gent neutrons from the partial cross sections and collision laws.

8.1 The Total Cros s Section

The total cross section of a composite material is obtained from
the cross sections and atomic proportions of the constituent nuclides. In
CRASH, the cross sections for each nuclide are obtained by interpolation
from points given in the UKAEA Nuclear Data File.(6,7) The energy points
tabulated are chosen so that linear interpolation of log (cross section) against
lethargy gives acceptably small errors. Each nuclide requires a different
set of energy points, and CRASH can use either the complete set or a reduced
set with a specified number of points, the reduction being such as to mini-
mize the additional errors introduced.

8.2 The Type of Collision

When a collision has been found, the probability that this occurs
with a particular nuclide N is given by the product of the macroscopic cross
section for that nuclide with the mean free path in the material, and so ran-
dom selection enables the nuclide to be identified. The next step is to deter-
mine the type of collision.

The probability that the collision is of a given type is just the
ratio of partial to total cros s section. These partial probabilities are ap-
proximated in CRASH by a step function of lethargy, typically with 64 or
80 steps, by a process designed to give a best fit to the original data. The
position of the steps will vary from nuclide to nuclide.

Thus, by a random selection the type of collision can be deter-
mined. The numbers of collisions of each type with each nuclide are counted
and recorded at the end of the print out as an action count.
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8.3 The Emergent Neutrons

The final step is to determine the number, directions, and leth-
argies of all neutrons emerging from a collision. In the case of fission, the
mean number of neutrons produced, V, is obtained by interpolation and the
actual number of emergent neutrons calculated by a random selection. If
required, the value of 11 can be multiplied by a specified constant before
making the random selection, a facility which is needed if it is desired to
calculate keff by interpolation.

If the collision results in a £is sion or isotropic scatter, the de-
termination of the emergent direction is straightforward. In the general
cas e of anisotropic scatter it has been found that a cubic equation of the
form

f..L = a + bZ + cZ 2 + dZ 3 ( 10)

gives an adequate representation, where Z is a random number, and
cos -1 f..L is the angle between the directions of the incident and emergent
neutrons in centre-of-mass coordinates. The coefficients a, b, c, and d
are functions of neutron energy, and can be tabulated at sufficient points to
allow linear interpolation.

This method gives a better representation and requires less
machine storage than would be needed for tables of equiprobable angles.

In general, the energy of the emergent neutron is dependent on
the incident energy and the angle of scatter. When it can be uniquely deter-
mined, the appropriate equation is used. In other cases, it is necessary to
sample from a probability distribution, which is dependent on the incident
and possible emergent energies. A particular case of a probability distri-
bution occurs after a fission, for which the emergent neutron energies are
found by sampling from a standard fis sion spectrum.

8.4 Thermal Neutrons and Multigroup Data

It is necessary to treat thermal neutrons ln a different way,
since at low energies both the motion of the nuclides and the forces acting
between them can have significant effects.

Because of these complications, a multigroup structure has been
adopted for neutrons below a specified energy, the group constants depending
on the molecules present, rather than the atoms, and on the temperature.
The energies of neutrons upscattered out of the groups are estimated by ran-
dom selection from an exponential distribution.
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The multigroup constants have to be determined by a prelim-
inary calculation, e.g., using the PIXSE program. (8) However, for some
applications, a single group of neutrons below 0.1 eV with no upscatter has
proved adequate. By extending the multigroup structure to all energies,
GEM can us e any of the standard sets of constants.

9. Geometrical Specification

The problem in GEM, as in any other field for which a complicated
geometrical specification is required, is to devise a method which can
readily be applied, which uniquely defines the system, and which can be
understood by a computer. In GEM this is achieved by combining a basic
specification, by which a system is divided into regions, with a detailed
specification which may be used inside any region. The former is built
into the program and requires the reading in of certain dimensions and
arrangements, whereas the latter calls on special subroutines, called
HOLE routines, specifically written for the job.

9.1 Basic Specification

The system is divided into regions by boundaries that form
closed nesting surfaces, which may touch or coincide, but may not inter-
sect. The geometry is referred to rectangular Cartesian coordinates in
which the boundaries can take the form of spheres, centred at the origin,
cylinders with the z-axis as axis or cuboids with edges parallel to the axes.
One of these region boundaries is designated as boundary B, dividing the
system into core and reflector.

When the boundary B is cuboidal, the core can alternatively be
divided into cells, called boxes, by planes parallel to the coordinate plates.
These planes need not be equally spaced, but they must pass right through
the core, so that boxes do not overlap. Each box has its own origin of co-
ordinates, although no rotation of axes is permitted, and it can be divided
into any number of regions by its own individual set of nested surfaces.
Boxes with different geometrical or materials content are given different
type numbers. The complete core is then specified by listing the type
numbers to give the arrangement of boxes, the position of each box being
defined by a set of three integral coordinates. If the outer boundary of the
reflector is cuboidal, it can be surrounded by a close-fitting specular re-
flector by specifying an albedo for each face.

For regions which contain only one homogeneous material, this
IS specified merely by its atomic composition and density. Otherwise, the
geometry of an inhomogeneous region is detailed using the stratagem of the
HOLE routine.
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9.2 HOLE Routines

It is possible to reduce the mean free path in a material to any
desired value by adding to the total cros s section obtained from those of the
constituent nuclides, a cross section for a fictitious reaction in which the
neutron experiences no change. Thus, the mean free path for each of the
materials in the region can be reduced to the same value and the collision
point obtained, using this value, independently of any internal boundaries.
The material at the collision is then identified by a routine which tests a
series of inequalities. A random test then decides whether this is a real
or fictitious collision; in the former case the appropriate collision routine
is called and in the latter a new path length is found, and the process pro-
ceeds to the next collision point.

In order to check a HOLE routine a program BABS has been
written "\vhich both checks that the routine links correctly with the main pro-
gram and gives, to scale, a pictorial cross section of the geometry in any
plane perpendicular to the coordinate axes. A typical BABS picture is
shown in Fig. 3.

10. Examples

To illustrate the use of GEM a few examples are given.

10.1 A Simple Array of Nesting Uranium Alloy Cups

This example is included to illustrate the basic specification
and to show the typical print-out given in Fig. 4. The problem was to find
the reactivity of a flooded array of 12 units of two different types placed
alternately. Each unit consisted of two uranium alloy cups one inside the
other.

Referring to Fig. 4, the core boundary (boundary B) is repre-
sented as region 11, which completely surrounds the array. In the re-
flector, which consists of water, about 15.7 in. thick, a filter has been
placed to ensure that only one-third of the neutrons in the outer layers of
water are followed. The nesting cylinders shown for each type build up
the units, and the arrangement shows how they fit together to form a
2 x 2 x 3 array. The z-direction is treated as the vertical one, and the
sequence of numbers under "Arrangement" gives the order in which the
types are arranged in each of the three layers, i.e., 1f in the lower, gin
the middle, and 1f in the upper.

For each stage, the numbers of neutrons entering, leaving, and
re-entering boundary B are printed together with the escapes from the sys-
tem, core multiplication, reflector albedo, and keff' After each five stage s
a print is given of the neutron cros sings of each boundary, and also a table
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which shows the numbers of neutrons entering each face of the core and the
faces from which their descendants leave the core. Finally, a print is given
of the total cumulated counts together with the criticality parameters MR
and keff.
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Fig. 3. BABS HOLE Picture
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DENSITIES ARE SCALED UP BY 2.5400
THE VERSION OF CRASH IS MASH7 THE UPPER LIMIT OF THE THERMAL GROUP IS 0.1000 EV.
NUCLEAR DATA
MATERIAL DENS ITY NUCLIDE PROPORTI ONS BY ATOMS ••..•.......

HDASH ONAT U238 U235 ALNAT
1 0.9980 2.0000 1.0000 O. O. O.
2 3.1700 00 O. 0.0700 0.9300 340 8890

RANDOM NUMBER • 000000000001
STAGE 0 STARTS 64 FISSION NEUTRONS IN REGION 1, CO-DRDINATES (0. , 00 , 00 ) BOX (1, 1, 2)
FIN ISH AT STAGE 25. 100 NEUTRONS PER STAGE
§..!Alli

IQ..!&i
RE.. RE..

ENTER LEAVE ENTER ESCAPE MULT REFL ENTER LEAVE ENTER ESCAPE MULT REFL
1 TO 1 100 125 85 0 1.2500 0.6800 100 125 85 0 10 2500 0.6800
KEFF • 0.89934
2 TO 2 100 175 110 0 10 7500 0.6286 200 300 195 0 1.5000 0.6500
KEFF • 1.02703
3 TO 3 100 188 106 0 1.8800 0.5638 300 488 301 0 1.6267 0.6168
KEFF • 1.02165
4 TO 4 100 96 64 0 0.9600 0.6667 400 584 365 0 1.4600 0.6250
KEFF • 0.53846
5 TO 5 100 114 78 0 1.1400 0.6842 500 698 443 0 10 3960 0.6347
KEFF • 0.80198
STAGES 1 TO 5

TO +X +'f +1 ..x ...y ...z BOUNDARY IN TOTAL OUT TOTAL OUTliN TOTAL
FROM

+l 55 48 2 0 0 2 1 1 293 293 280 280 0.9556 0.9556
+Y 70 16 74 8 9 6 12 2 314 314 360 360 1.1465 1.1465
+Z 21 9 11 16 13 8 3 3 368 368 412 412 1.1196 1.1196
-X 184 6 14 9 162 27 9 4 404 404 544 544 1.3465 1.3465
..y 147 19 12 9 37 131 8 5 982 982 1067 1067 1.0866 1.0866..r 23 1 1 0 1 1 13 6 327 327 312 312 0.9541 0.9541

7 377 377 442 442 1.1724 1.1724
TOTAL SOO 99+ 114+ 42+ 222+ 175+ 46 • 698 8 428 428 493 493 1.1519 10 1519

9 451 451 619 619 1.3725 1.3725
10 997 997 1110 1110 1.1133 1.1133
11 443 443 698 698 1.5756 1.5756
12 21 21 42 42 2.0000 2.0000
13 7 7 14 14 2.0000 2.0000
14 0 0 0 0 0 0

(ETC. TO STAGE 25)

REQUESTED NUMBER OF STAGES HAVE BEEN DONE

Fig. 4. (Contd.)
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STAGES 1 to 25CUMULATED COUNTS
TO +X +2 -x -y -2

FROM
+X 479
.Y 472
+l 204-x 681
-y 481.z 183
TOTAL 2S00

469 40 23 22
52 429 31 42
U N 1n
37 11 31 630
51 19 ZZ 17
31 46 8 39
668. 635. 299. 841.

51 22
23 31
20 3
83 41
422 21
33 148
632. 218 - 3353

UNFISSIONED INS 1393,
OUTS. 1803,

0.66597
0.55814
0.55556o

(3)/(2)

0.95788
1.16137
1.13315
1.38896
1.09331
0.95830
1.16921
1.14158
1.37818
1.11445
1.34120

(2)/(1)

12
13
14

BOUNDARY (1)
NUHBER INS
1 1092
2 1227
3 1442
4 1594
5 4169
6 1295
7 1442
8 1681
9 1769
10 4054

... 11 .... 2500

(2) (3)
OUTS INS
1046
1425
1634
2214
4558
1241
1686
1919
2438
4518
3353 2233
215 120
72 40o 0
H • 1.3412
R • 0.6660
T • 0
M·R • 0.8932

ACTION COY!! STAGES 1 TO 25
MATERIAL t. NUCLIDE ABSORB ELASTIC (N,N·) (N,2N) (N.3N) FISSION FISS ION

CHILDREN

CORE. MULTIPLICATION,
REFLECTOR. REFLECTION

TRANSMISSION

ELASTIC (N,N·)

13 2
159 10
1618 47
121

46261
6354
45457

FISSION FISSION
CHILDREN

o 0
136 334
1000 2451

oo

---

(N.3M)

oo

(N,2N)

oo

oHDASH 37
ONAT 0
THERMAL 1568
NEUTRON GAIN. -1605

MATERIAL 2. NUCLIDE ABSORB

U238 2
U235 65
ALMAT 6
THERMAL 175
NEUTRON GAIN. 1401

SUM OF FISSIONS FOR ALL NEUTRONS LEAVING CORE. 5588

LIMIT OF 128 FISSIONS PER NEUTRON PER STAGE EXCEEDED 0 TI"ES
KEFF • 0.94300

TIME SiNCE BEGINNING OF JOB • 35.98 HINS
TIME TAKEN FOR THIS CASE • 14.70 "INS

Fig. 4. (Contd.)
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10.2 A Lattice of Rods in Water

The second example is a calculation made, as a check on the
nuclear data, to reproduce an experimental measurement of critical size
of a lattice of PuOrUOz rods in light water reported from Hanford. (9)
The rods, of 0.372-in. diameter and 48.5 in. long, were loaded at a spacing
of 0.80 in. in a hexagonal lattice and completely reflected by water.

For this calculation the core was taken as a single cylindrical
region and the hexagonal lattice geometry incorporated by means of a HOLE
routine. In the HOLE routine for a hexagonal lattice it is convenient to make
the transformation

X 2x= N +¢../3;

y = N
- ¢../3 ¢'

N
x YZ = -¢../3-'¢'

where ¢ is the lattice pitch and N is an integer large enough to ensure
that X, Y, and Z remain positive. All values of X, Y, and Z such that
X + Y + Z = 3N then represent points in the x, y plane, and the lattice
points are given by integral values of these coordinates.

By making use of this latter property the nearest lattice point
to X, Y, Z can readily be found, and a test can then be applied to ascer-
tain whether or not the point is inside the rod centred at that position.

A BABS picture from this HOLE routine is given as Fig. 3, in
which 1 represents water, 2 fuel, and 3 cladding.

A time of 87 min was taken on the IBM-7090 for this problem,
during which 44 stages were completed and the keff was calculated to be
1. 011, with a standard error of 0.01.

10.3 An Experimental Graphite Moderated Reactor

The Dragon reactor, as described at the third Geneva Confer-
ence,OO) has a core built up of hexagonal elements,* each containing 7 fuel
rods embedded in graphite, and the reflector is of graphite.

For the purpose of calculation, the complete core was broken
into elements of the shape shown in Fig. 5. For convenience the shape of
the coolant channels was altered slightly, but, apart from this, these ele-
ments fit together to make a core identical with the Dragon core.

':'See Fig. 5 of Ref. 10. 575
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Fig. 5. Fuel Element (See 10.3)
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Each element was divided into boxes by the dashed lines shown
in the figure. In each box a simple HOLE routine was needed to allow for
the fueled region, but the rest of the geometry could be built up of the basic
shapes. The boundary B was chosen to be cuboidal, with one face bisect-
ing the reactor horizontally, one lying along the top of the core, and the
other four enclosing the core as closely as possible. Outside was a re-
flector, being 100% specular on the bisecting plane and the correct thick-
ness of graphite elsewhere. Thus the core for calculations was a lattice
of size 37 x 21 x 1.

For one particular loading calculated, 50 stages were run in
38 min and a keff of 1.115 obtained, with standard error 0.01.

10.4 A Thermal Power Reactor

A calculation, for which the statistical analysis of the results
is discussed in Section 4.2 above, was for a gas-cooled graphite-moderated
power reactor. The core of this reactor consisted of cylindrical fuel ele-
ments, control rods, experimental channels, etc., arranged on a hexagonal
lattice. Each element consisted of a number of fuel pins. The elements,
except for a few treated separately, were spaced widely enough for the core
to be built up of cuboidal boxes, alternate ones containing fuel elements and
the others graphite moderators. A HOLE routine was required to describe
the geometry of the elements. Again, boundary B was chosen to include a
horizontally bisecting plane, and the core consisted of a lattice of 41 x 23 x
4 boxes. A typical calculation of this series took 120 min for 100 stages and
gave a keff of 0.948, with a standard error of 0.01.
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Discussion of Paper
Pre sented by Mr" Woodcock

MR. MILLER (Argonne National Laboratory): I understand this code
represents the cross sections quite accurately. You have the energy of the
resonance cross sections and, in some regions, very high cross sections.

577



WOODCOCK et al.

Then you make the cross section in other regions equal to this, introducing
a large number of interactions for a neutron crossing a region which has,
physically, a small eros s section. Can you give me some idea of the effect
this has on increasing computing time?

MR. WOODCOCK: There are two cases. If one material has a high
cross section over an extended range of energy, such as in the case of a
control rod, it is better to separate that material into a separate region.
But in the case of a resonance--a comparatively narrow area of very large
cross section--the chance that a neutron is actually of the right energy for
that re sonance to need a large number of small steps is comparatively
small. In fact, I think the best thing to say about this is that we have done
quite a number of calculations with U238 and other materials, and there has
been no indication that the time of computation has been increased unduly
because of this effect.

MR. IRVING (Oak Ridge National Laboratory): How do you handle
the angular distributions and the inelastic scattering in the program?

MR. WOODCOCK: I doubt whether I can say very much in a few
words. We take the AWRE data file which contains tabulated values, giving
an angular' distribution. We have, up to the present, tended to take the value
from this tabulated list by interpolation. We are now in the process of chang-
ing these tabulated values back into some formula which gives the angular
scatter as a function of a random number. This sort of formula takes up
less space in the machine and also has the advantage that one can interpolate
over energy more easily. For inelastic scatter energy los s we apply a
standard formula.

MR. WADE (AERE, Harwell): Can you tell me what treatment of
thermal-neutron scattering you use?

MR. WOODCOCK: In the current system neutrons below a certain
energy, which we specify, are treated in multigroup fashion. The multigroups
are obtained from calculations at HarwelL Weare planning to extend this
by dividing the energy range into three regions.

We will treat the higher- energy region, in which there is a
probability of an upscatter, as in our present general treatment. In'the
low-energy region a multigroup representation will be used. In an inter-
mediate region we can use a simple formula for a distribution of neutrons
from an inelastic scatter. We are looking into the possibility of incorpo-
rating that type of scheme.

MR. CHURCH (Savannah River Laboratory): I missed your justifi-
cation for replacing the actual cross section of a region by the cross section
of the surrounding medium.
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MR. WOODCOCK: In a Monte Carlo calculation if one gets a neutron
pas sing through regions, one has to calculate each boundary eros sing point
before he can find a collision point. This calculation takes quite a lot of
machine time. By doing this trick with cross sections we ensure that a mean
free path in each of these regions is the same, so we can find the collision
point without having to find the point at which the boundaries have been
crossed. Having found a point in this system, the arithmetic to find out which
material that point is in is a much simpler and quicker problem. It also
has the advantage that these HOLE routines for this different geometry can
be written as separate subroutines which can be plugged in. We are gradually
building a library of those.

MR. BRICKSTOCK (AWRE, Aldermaston): What are your criteria for
determining when k has settled down to an equilibrium value, bearing in
mind the statistical deviations for the k value s you determine?

MR. WOODCOCK: First of all, we use MR as the fundamental param·-
eter. We first want to find when MR has settled down to its correct value
and then deduce the k from it. This is the standard type of statistical test.
One can compare the value coming out of successive samples and compare
these with the mean values.

MR. BRICKSTOCK: Suppose you have an MR value that is varying
slowly; you must relate the rate of change of this to the statistical deviation.
At what stage do you say that it is not changing?

MR. WOODCOCK: This doesn't happen. We don't get a monotonic
change in MR.
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